The Use of Public Datasets in Distributed Parameter Groundwater Flow Models in the Twin Cities

Tina Pint Barr Engineering Co.

The Highlights

- Overview of modeling process
- How is data used in groundwater models
- What type of data do we commonly use
- What data do we wish we had

Ok – So what's a "Distributed Parameter" Groundwater Flow Model?

- Hydrogeologic Parameters can vary considerably in three dimensions (and sometimes in four dimensions)
- Numerical approximation is finite difference or finite element
- e.g. MODFLOW

The Pieces of a Groundwater Flow Model Puzzle

The steps involved in groundwater modeling

The data used groundwater modeling

A problem arises that is best solved with a groundwater model

2. A conceptual hydrogeologic model is developed

3. The data compilation process begins

- Boundary conditions
- Parameterization
- Initial conditions
- Sources and sinks

Twin Cities Data Sources

- Gridded data of geologic unit base elevations (MGS)
- CWI (MGS)
- SWUDS appropriations (DNR)
- WELMAN database (Dakota County)
- Metro Model calibration data sets (MPCA)
- Metro Model aquifer parameters (MPCA)

4. The model is built

- Modeling is performed in specialized graphical user interfaces (GUIs)
- Model properties are assigned to grid cells

Intrinsic aquifer parameters are typically "zoned"

Examples:

- 1. Hydraulic conductivity
- 2. Porosity
- 3. Storage parameters
- 4. Infiltration (recharge)
- 5. Solute transport parameters

Aquifer geometries are distributed, interpolated, grid values

Examples:

- 1. Aquifer base elevations
- 2. Top elevation
- 3. Initial heads

Sources, sinks and calibration targets are typically line or point data

Examples:

- 1. Streams/rivers
- 2. Production wells
- 3. Head targets

The model is calibrated

Either done by hand, i.e. trial-and-error

 Or done by an inverse model, for example PEST or UCODE

6. The model is used to make predictions

Proposed Sample Locations

★73 Proposed Sample Location

Numbers correspond to "Map ID" in Table 1

How do we get the data into the model?

- Most GUIs import and export ESRI shapefiles, XYZ text files, and DXF files
- Grid data is typically entered as XYZ data or point shapefile data (and interpolated within the GUI)

A large part of what we do in model construction is manipulate files in ArcView/ArcGIS

How do we manage all of this data

GIS Served Data – Pristine

Project Data – Manipulated

Model data – Further manipulated

That's the data we have, but what do we want (or don't know about)?

- Time of travel information
- Regional hydraulic conductivity values
- Base flow information and stage duration curves
- Maps of known contamination plumes (and the geological unit they are in)

That's the data we have, but what do we want (or don't know about)?

- Sub-unit grid elevations (e.g. Oneota, Franconia, basal St. Peter)
- Elevations (and extent) of continuous permeable zones in PDC
- Elevations (and extent) of more permeable zones in FIG

Data for Transient Models

Time variant targets

Select databases of monthly pumping

Stage-duration curves

