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Natural attenuation

• “. . . a variety of physical, chemical, or 
biological processes that, under favorable 
conditions . . . reduce the mass, toxicity, 
mobility, volume, or concentration of 
contaminants.” 

(EPA, 1999)



Dominant processes in natural 
attenuation

• Biological reductive dehalogenation
• Sorption
• Dilution

Abiotic mechanisms are ignored.
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 3U020 3M020 3L020 4U020 
O2 9.5 ppm 0.8 1.8 0.02 
NO3

-2 2.6 <0.1 <0.1 <0.1 
Mn+2 0.13 1.12 1.3 0.67 
Fe+2 <0.1 <0.1 <0.1 1.8 
SO4

-2 28. 3.3 4.6 6.8 
ORP 118 -60 -119 -243 
CH4 ND 0.035 0.015 0.007 
DOC 2.4 1.3 1.3 2.3 

 

 



 03U020 03M002 03U314

TCE 904 150 210 

c-DCE 4.0 2.1 1.2 

t-DCE ND ND ND 

VC ND ND ND 

Ethene ND ND ND 
 

 



1998 TCAAP Natural 
Attenuation Study

• EPA beta-testing of the newly developed 
natural attenuation remedy protocol.

• Insight to the long-term fate of the TCAAP 
deep ground water contaminant plume.

• Rationale for remedial decisions for 
ground water.



Anticipated TCAAP plume



NO
RT
H

TCAAP Simulated TCE
With Source and Dissolved

Phase Decay

Time = 1998

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
0

5000

10000

15000

20000

25000

30000

5.00

10.00

50.00

100.00

500.00

1000.00

5000.00

10000.00

Actual TCAAP Plume



• A contaminant first-order decay rate of at 
least -0.2 yr -1 is required to account for 
the current size of the plume.

• The aquifer environment was not favorable 
to biological degradation of chlorinated 
solvents.
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Microcosms

• 45 g sediment slurry in each microcosm
• Spiked with either cis-DCE or 1,1-DCE
• One half of the microcosms were heat-killed
• Stored in an anaerobe chamber for 830 days
• Sampled quarterly
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D e e p S e dim e nts
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Monitoring well near contaminant source
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• Lee and Batchelor, ES&T 2002
– Abiotic reductive dechlorination of chlorinated 

ethenes by magnetite and pyrite.
– Vinyl chloride not generated by the reductive 

dechlorination of DCE.

“(iron containing minerals) could be more 
important than microorganisms under some 
conditions in affecting the fate of chlorinated 
ethenes.”



• TCAAP sediments are 0.3 wt% magnetite.

• Magnetite accounts for 25% of total iron in 
the sediments.

• There is ample magnetite in the sediments 
to reduce all of the DCE added to the 
microcosms.



a)

b)

magnetite
grains



Iron  content in TCAAP sediments

567 ± 1129,16411,190 ± 125015-20

649 ± 10910, 25112,450 ± 182010

556 ± 156,5157,820 ± 1100-5

BioavailableTotal
(Nitric Acid)

Total 
(XRF)

Depth Below 
Water Table 
(Approx ft)



• Non-biological attenuation may be more 
important than biological mechanisms.

• Natural attenuation studies should 
consider the possibility of abiotic 
degradation processes for chlorinated 
solvents.
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