

Remediation Technologies

Chemical Treatments

By: Larry Kinsman

- The Chemistries
- Implementation
- Case Study
- Variables on Pricing

Chemical Approaches

- Chemical Oxidation
- Reductive Dechlorination
- Metal Stabilization
- Bioremediation

Chemical Oxidation

- Oxidation involves breaking apart the chemical bonds and removing electrons
- The "Oxidant" is the "Electron Acceptor", and is chemically reduced by the reaction
- Chemicals with double bonds are most readily oxidized
- Strong oxidants attack a wider range of bonds

The Oxidation Chemistries

- Hydrogen Peroxide with Acid Water (pH dependent)
- Sodium Persulfate
- Ozone
- Permanganate (not pH dependent)
- Fenton's Reagent (pH dependent)

Potassium Permanganate

- Comes in a powder form
- Soluble up to 6%
- Reality in the field is approximately 1% to 3%
- Is not pH dependent
- By-product is manganese dioxide

Sodium Permanganate

- Shipped in liquid form of 40%
- Common use in the field is from 2% to 15%
- By-product is manganese dioxide and is not pH dependent

Permanganate

- Chlorinated solvents (mainly ethenes)
- Phenols
- Sulfides
- Explosives

- Produced in powder form
- Utilized from 1% to 40% solution in the field
- Is not pH dependent

 Can be catalyzed with heat, transitional metals, other oxidants, and chelated iron

- Hydrogen Peroxide is produced in a liquid form
- Common use in the field is from 2% to 25%
- Is pH dependent and is catalyzed with transitional metals, and chelated iron

- Ozone is available in a gas
- Degrades to dissolved oxygen
- Reacts with water and hydrogen peroxide to produce hydroxyl-radicals
- Produced on site by an ozone generator

Persulfate / Fenton's / Ozone

- Chlorinated Solvents
- BTEX
- Napthalenes
- Explosives
- Coal tars

Oxidation Potentials

Compound	Oxidation Potential
Fluorine	3.03
Hydroxyl radical	2.80
Sulfate Radical	2.60
Ozone	2.07
Sodium Persulfate	2.01
Peroxide	1.78
Permanganate	1.68
Hypochlorite	1.55
Chlorine	1.36

Remediation Technologies

UKIN

Chemical

- Zero Valent Iron

(dechlorinates chlorinated compounds)

Biological

- Lactic Acid
- Soy Bean Oil
- Combinations

Chemical

- Zero Valent Iron
- Catalyzed zero valent

- Aluminum sulfate and acetic acid are used as the catalyzer

Treatment Example

Treatments (ppm)	Initial	1 d	14 d	28 d	90 d Mixed	
Control (Moist)	1,813	1,976	1,766	1,638	1,522	
lron	1,789	972	769	537	504	
lron + Acetic Acid	1,740	403	219	162	90	
Iron + Al ₂ (SO ₄) ₃	1,656	82	40	103	40	
$\frac{1}{Al_2(SO_4)_3}$	1,402	65	41	34	13	

Biological

- Soy Bean Oil
- Lactic Acid
- Combinations

Example Products

- EOS[™]
- Engineered Soy Bean Oil
- $HRC^{\mathbb{R}}$

- Soybean Oil $(C_{18}H_{32}O_2)$ ferments to H_2 and simple organics
- $C_{18}H_{32}O_2 + 34 H_2O \rightarrow$ → 18 $CO_2 + 50 H_2$
- H₂ and simple organics
 - Consume oxygen
 - Drive dechlorination

Heavy Metals

- Phosphates (TSP, Enviroblend)
- Fly Ash
- Sulfates
- Ferrous

Bioremediation

- Calcium Peroxide (PermeOx[®] Plus) Slow release oxygenating compound
- Magnesium Peroxide (ORC®) Slow release oxygenating compound

PermeOx®Plus Versus ORC®

	PermeOx® Plus	ORC®
ctive Oxygen	17%	10%
Н	10.5-11.8	10.5 - 11.5
olubility	Slightly	Insoluble
mount needed per		
ound of hydrocarbon	133 lbs (60 kg)	244 lbs (111 kg)
ost per pound (compound)	\$8.00 (US)	\$11.00 (US)
ost per pound of O ₂ delivered	\$44 (US)	\$110 (US)

Bacterial Plates

Control

PermeOx®Plus Calcium Based Product

ORIN

Implementation Processes

Ex situ

- Above ground treatment of contaminants

In situ

- In place treatment of contaminants

Ex situ Methodologies

Ex situ treatment of soil and groundwater

- Pugmill/Backhoe/Soil Tilling
 - ▶ used to mix soil with oxidants or metal treatment
- Frac tanks

➤ used to mix groundwater with oxidants

- Advantages
 - Treat contaminants on-site
 - Reduce liability (no hazardous waste landfilling)

Ex-Situ Application

ORIN

Current In situ Methodologies

Diffusion method

Dispersion method

Dispersion

Types subsurface mixing techniques

- Grouted in injection points
- Backhoe mixing
- Direct Push

Injection Point

Injection Rod With Disposable Point

Direct Push Injection

Typical Injection Point Layout

Injection pump

Injection Trailer

Back Of Injection Trailer

Typical Site Equipment Setup

Property Transaction Site InSitu Chemical Treatment

General Information

- Oil Refinery (pipeline leak)
- Soil: silty clay
- Depth of contamination: 4 to 13 feet
- Contaminants: BTEX
- PermeOx[®] Plus injected 15% to 40%
- Number of injection points: 35
- Number of days on injecting: 3

Groundwater Results

Case Study

Source Removal in a Waste Lagoon ExSitu Chemical Treatment

General Information

- Cosmetic and Cleaning Products Manufacture
- Soil: silty clay overlaid by sand
- Depth of contamination: 5 to 20 feet
- Contaminants: PVOCs, SVOCs, PCBs, and Chlorinated Solvents
- Chemistry: Catalyzed Persulfate 15% to 25%
- Approximately 9000 cubic yards
- Number of treatment days: 35

Chemical Mixing

Soil Results

Concerns Relating to Chemical Treatment

Displacement

- Injection results in creating a mixed zone
- Sentinel wells have been installed in the clean-up areas at other sites with no impacts
 Typical injection is from the outside moving in

in

Effects on Natural Attenuation

- Aerobic degradation is enhanced due to increased oxygen levels (depending on chemistry used)
- It does not completely sterilize the treatment zone

Health and Safety

- Review of site conditions (utility corridor, constituents, surrounding land use)
- Site-specific Health and Safety Plan
- Subsurface mixing of reactive chemicals
- Health and Safety audits

Variable Project Costs

- Volume of contaminant
- Size of the plume
- Type of lithology
- Days on site

Advantages of Chemical Treatments

- Can be more cost-effective than traditional remediation methods
- Dramatically reduces the time required to restore and redevelop contaminated sites
- Accepted by the USEPA and are proven chemistries
- Technology can achieve groundwater standards
- Can be used as a stand-alone treatment or in conjunction with other treatment options

Question and Answers Relating to Chemical Treatment

Contact Information

Larry Kinsman ORIN Remediation Technologies 25 Kessel Ct, Suite 105 Madison WI 53711 608-445-7707

