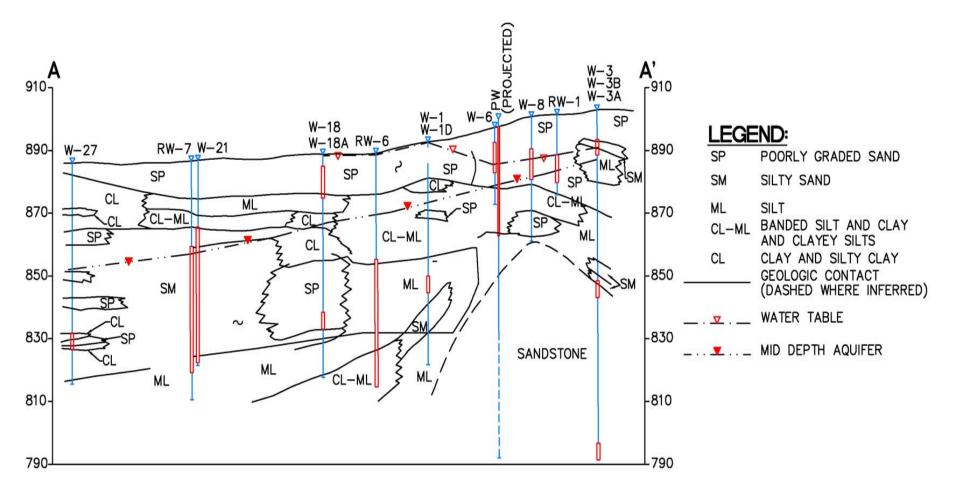
Phytoremediation Case Study A Growing Solution for Hydraulic Control, Groundwater Treatment and More

MGWA Spring 2004 Conference University of Minnesota, St. Paul

Presented by: Bruce K. Olson, PE – SEH Inc.

May 4, 2004

Overview of Presentation


Tank 21

- Project Background
- Treatability Study Phases
- Key Findings
- Recommendations and Options
- Questions and Answers

Project Background

- WRR Environmental Services Co., Inc.
 - Waste solvent recycling and wastewater treatment since 1970
- Historical releases to site soils and groundwater
 Volatile organic compounds (VOCs) detected in groundwater in 1978
 - Multiple phases of investigation and remediation since 1979
 - RCRA Facility Investigation (RFI) process begun in 1988
 - Active regulatory agency involvement

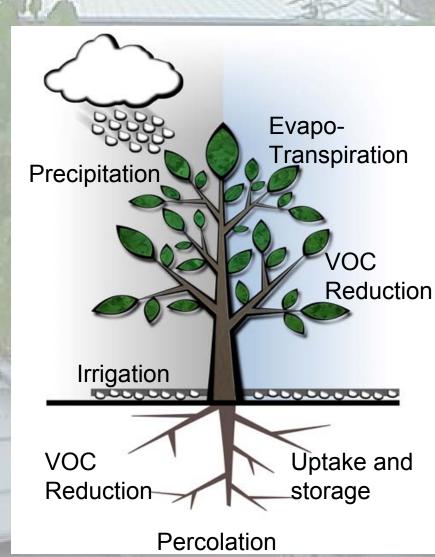
Project Background (cont')

Project Background (cont')

Project Background (cont')

Remediation System Optimization

 \rightarrow


- Began in 2002
- Water balance increase net groundwater recovery

Phytoremediation

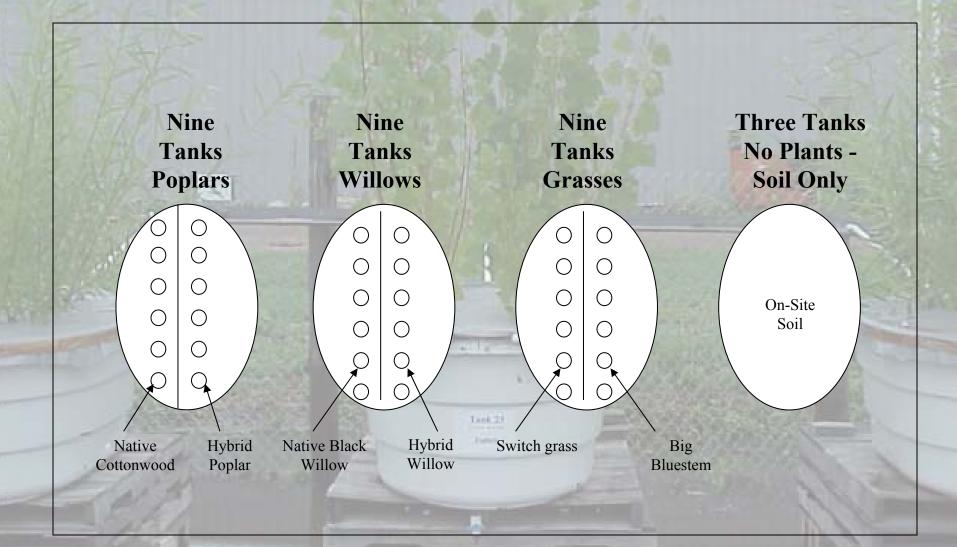
- Segregated "hot" well for off-site treatment
- Used treated groundwater in facility processes
- Replace shallow pumping wells with trees

Phytoremediation Processes

- Hydraulic control
- Uptake of VOCs in root zone
- Metabolism of VOCs
 within plant
- Evapotranspiration of volatiles

Phytoremediation Processes (cont')

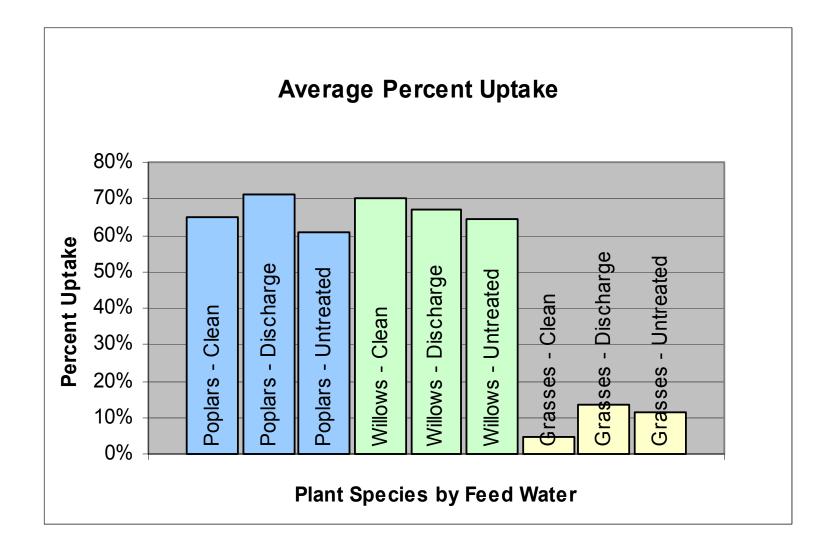
- Consider Phytoremediation at the site for:
 - Hydraulic uptake and control
 - Water quality improvement
 - Development of beneficial natural resource
 - County Park → Arboretum
- Phased treatability studies from May to December in both 2002 and 2003


Trees 2

Phase I (2002)

Objectives:

- Evaluate use of plants to improve hydraulic control at site
- Evaluate possible VOC removal by using plants
- Evaluate hybrid and naturally occurring species of poplars, willows and grasses
- Select best plant materials



- Operation, Maintenance and Monitoring
 - Plant inspection and spraying
 - Water balance three times per week (uptake)
 - Sampling and analysis (VOC reduction)
 - Feed water each event, drain water monthly

Trees 2

- Plant Measurements and Harvest
 - Height and diameter measurements
 - Mortality
 - Soil samples

Phases II and III (2003)

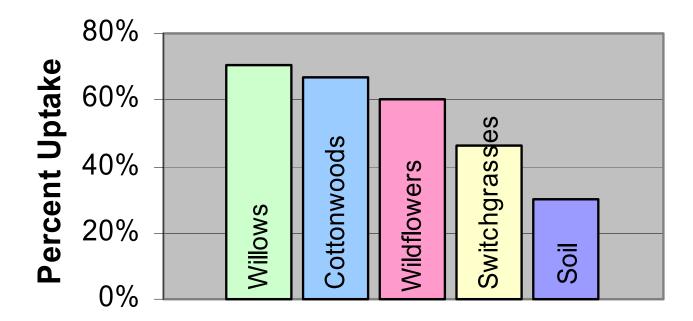
- Objectives
 - Refine design under more representative field conditions
 - Obtain additional performance data on uptake and VOC reduction/removal
 - Perform side by side tank study and in-ground plantation

Lords 24

Discharge water only

Phase II Tank Study (2003)

- Design and Construction
 - 14 uncovered tanks
 - Cottonwood, willow, switchgrass, wildflowers and soil
 - Planted 10-inch long cuttings or rooted plugs


Phase II Tank Study (2003) (cont')

- Operation, Maintenance and Monitoring
 - Plant inspection and spraying
 - Water balance three times per week
 - Sampling and analysis
 - Feed water each event, drain water monthly
- Plant Measurements and Harvest
 - Height and diameter measurements
 - Soil samples
 - Aboveground and belowground biomass samples

Look 25

Phase II Tank Study (2003) (cont')

Average Percent Uptake

Plant Species

Phase II Tank Study (2003) (cont')

Plant Material	Average Height (cm)	Average Diameter (cm)	Average Volume (cm ³)
Cottonwoods	167.85	1.42	353.84
Willows	212.41	1.43	443.24
Switchgrasses	98.35	N/A	N/A

Phase III In-Ground Plantation (2003)

- Design and Construction
 - Two each 7 x 7 plots of cottonwood, willow and switchgrass
 - Trickle (drip) irrigation system

Phase III In-Ground Plantation (2003) (cont')

- Operation, Maintenance and Monitoring

 Plant inspection, spraying and weed control
 Watered three times per week
 Up to 3,000 gallons per watering event

 Plant Measurements and Harvest

 Height and diameter measurements
 - No plants harvested

Phase III In-Ground Plantation (2003) (cont')

Plant Material and Plantation Location	Average Height (cm)	Average Diameter (cm)	Average Volume (cm ³)
Cottonwoods (NW)	157.72	1.58	460.20
Cottonwoods (SE)	184.10	1.83	763.70
Willows (SC)	160.24	1.30	308.34
Willows (NE)	159.95	1.22	274.18
Switchgrasses (NC)	102.11	N/A	N/A
Switchgrasses (SW)	95.20	N/A	N/A

Phytoremediation Treatability Study Key Findings

- Excellent plant growth
- Low mortality
 - Effective hydraulic control
 - Effective VOC removal or reduction for plant/soil system
- Improve the environment through use of natural resources
- It's much more than just "Plant them and they will grow"

Recommendations and Options

• 2004

- Expanded in-ground treatability study with established plants
- Partner involvement
 - Objectives, agreements and permits
 - Site locating
- Plan, prepare and obtain plant materials

Lords 24

- 2005
 - Full-scale implementation

Thank You!

Phytoremediation Case Study

A Growing Solution for Hydraulic Control, Groundwater Treatment and More

Bruce K. Olson, PE

