Water Budgets The foundation for determining sustainability

> Thomas C. Winter U.S. Geological Survey

 To determine sustainability of a resource it is essential to know how much is present in a given area or volume and how that amount is replenished and depleted.

Water budgets are conceptually simple, but difficult and expensive to determine accurately.

 The problem relates to limitations in our ability to measure storage, and changes in storage, in an accounting unit, as well as the fluxes to and from it.

Arithmetic mean: 3.09 inches

Thiessen method: 2.84 inches

Isohyetal method: 2.61 inches

Gauge dens	ity	Sampli	ng error		
(mi2/gauge)		(Perc	ent)		
		<u>3-hour s</u>	storm (in)		
	<u>0.1</u>	0.5	1.0	2.0	
25	10	6	4	3	
50	17	10	8	6	
		Monthly			
	1	2	4	8	
25	4	3	3	2	
50	6	5	5	4	
	sonal				
	<u>10</u>	15	20	30	
25	2	1	1	<1	
50	3	2	2	1	
	(Illin	ois) Huff a	nd Schicke	danz, 19	

ET compared to Energy Budget - Williams Lake			
Method	Mean	Std. Dev.	
	(cm/mo)		
Penman	-0.03	0.80	
DeBruin-Keijman	0.16	0.90	
Priestley-Taylor	0.42	0.96	
Jensen-Haise	0.00	1.80	
Mass transfer	-0.10	1.27	
Makkink	-0.35	1.58	
Papadakis	-0.43	1.21	
Hamon	0.77	1.65	
DeBruin	0.86	1.78	
Stephens-Stewart	-1.30	1.32	
Brutsaert-Stricker	2.17	1.27	

Figure 4. Generalized extent, elevation of regional potentiometric surface, generalized direction of ground-water flow, and saturated thickness of the Pineland Sands Surficial Aquifer.

Outwash, southern Wisconsin

Thiensville Formation, southeastern Wisconsin

Schulze-Makuch, et al., 1999

Errors in he	ad map		
related to de	ensity of control po	ints (Hanson, 19	972)
432 sq. mi.			
Well	Difference from	standard	
spacing	Average	Range	
miles	feet	feet	feet
1	0.09	6.7	-5.5
4	1.15	27.2	-24.1
6	1.33	29.2	-29.2

Christensen and Cooley, 1999

Gauged outflow

Residual

Precipitation Evaporation

Konikow, 1986

Water Budget of Mirror Lake Ground-Water Basin

(Tiedeman, Goode, and Hsieh, 1997)

•	Budget component	Simulation A	95 % CI
•		(1000 m3/yr)	
•		Recharge	
•	Precip. To bedrock	172	161-183
•	Precip. To glacial deposits	129	120-138
•	Streams to glacial deposits	6	5-7
•		Discharge	
•	Glacial deposits to streams	171	161-181
•	Glacial deposits to Mirror L.	133	126-140
•	Lake sediments to Mirror L.	1	
•	Bedrock to Mirror L.	2	
•	Flow	between hydro	ogeologic units
•	Glacial deposits to bedrock	18	13-23
•	Bedrock to glacial deposits	187	174-200
•	Bedrock to lake sediments	1	

Mirror Lake Water Budget

1000 m3/yr

	<u>Original</u>	<u>Model</u>	<u>lsotopes</u>	Mg
Precip.	182			
SW in	417			
GW in	47	133	103	?
Evap.	77			
SW out	251			
GW out	281	366	337	?
In-Out	37			
Del.V	44			

A water budget is a progress report.

They need to be revised and updated as new information on water budgets of contiguous water bodies, and water development, become available.

In addition, in the case of ground-water budgets, new information on aquifer geometry and hydraulic heads accompany each new test hole and observation well, which affects the storage term.

Water budgets need to be corroborated by chemistry.

The real value of a water budget is determined by how well the user understands, *and takes into account,* its uncertainty.