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Overview of Presentation

• Background on Simulation-Optimization Modeling: 
• What is it?
• Why use it?

• Example Application
• Optimization-Modeling Resources



Example Ground-Water Management 
Problems

• Maximize ground-water yields 
from a basin

• Control water-level declines
• Control saltwater intrusion
• Conjunctively use ground-

water and surface-water 
resources Center pivot irrigation system,

High Plains aquifer



General Issue

• Numerical models are powerful tools for simulating 
complex hydrogeologic and water-resource 
management systems

• Trial-and-error approach for determining ‘best’ 
operating policies is difficult:
• complexity of ground-water systems
• large number of engineering, legal, and economic facts 

that can affect water-resource management 



Alternative Approach: Simulation-
Optimization Modeling

Combines ground-water modeling with management-
modeling techniques to determine optimal ground-
water management strategies given a specific 
management objective and set of management 
constraints



General Approach for Simulation-
Optimization Modeling

Identify water-resource 
management problem

Collect and analyze hydrologic 
and hydrogeologic data

Collect water-resource
management information

Develop and calibrate a 
ground-water 

simulation model 

Define objectives and constraints 
of the water-resource management

 (optimization) model

Link simulation and optimization models

Apply simulation-optimization 
model



Components of an Optimization 
Model

• Objective Function
• Maximize withdrawals
• Minimize drawdowns

• Constraints
• Upper and lower bounds on pumping rates
• Maximum drawdowns; maximum rates of streamflow depletion
• Meet minimum water-supply demands

• Decision Variables
• Quantifiable controls (decisions) whose values are determined by

solution of the model



Outputs of an Optimization Model:
Values for the Decision Variables

• Timing, rates, and locations of withdrawals at wells
• Timing, rates, and locations of injection at wells or 

discharge to artificial-recharge basins
• Timing, rates, and locations of interbasin transfers

• In simulation modeling alone, these variables are 
specified



Why is Optimization Modeling Useful?

• Explicitly accounts for management/policy 
objectives and constraints within the modeling 
process

• Provides a means to understand tradeoffs between 
various constraints and possible uses of ground-
water resources

• Improves the understanding of the hydrogeologic 
system



Example Application:

Evaluation of Tradeoffs Between Instream-Flow Criteria 
and Ground-Water Development, 

Big River Basin, Rhode Island



Common Water-Resource Issue: How to increase 
gw withdrawals while minimizing the effects of gw 

development on instream flows?



Minimum Instream-Flow 
Requirements

• Protect aquatic and 
riparian ecosystems

• Ecological 
requirements have 
been difficult to 
define

• Regional, long-term 
streamflow statistics

Water-supply well house near 
the Hunt River, Rhode Island



Approach: Simulation-Optimization 
Modeling

• Link transient, numerical ground-water flow models 
with optimization methods to evaluate hydrologic, 
hydrogeologic, and proposed instream-flow policies 
on ground-water development options

• Approach for linking simulation and optimization 
models is known as the ‘response-matrix approach’



Big River 
Basin, 

Rhode Island



 Simulated
Water Table

Carr-Mishnock
River Basins

Big River
Basin



 Existing and 
Potential Well 
Sites and 
Streamflow-
Constraint 
Locations

Big River Outflow Mishnock River Outflow



Optimization (Management) Model
• Decision variables

• Monthly withdrawal rates at wells
• Objective function

• Maximize total annual withdrawals
• Constraints

• Specified streamflow requirements during some or all 
months of the year

• Water-supply demands
• Maximum/minimum withdrawal rates at wells



Example Streamflow and Instream-Flow 
Criteria for Big River at its Outflow



Results: Tradeoffs Between Instream-Flow 
Criteria and Ground-Water Withdrawals

Point A: Modified Annual 
Aquatic Base Flow (ABF) 
Criterion of 0.5 ft3/s/mi2



Monthly Withdrawal Pattern for 
Modified ABF Criterion (12 Mgal/d)
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Typical Water-Supply 
Demand Patterns in Rhode Island



Withdrawals are Reduced to 6 Mgal/d 
if System Must Meet Typical Demand 

Pattern
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Conclusions
• Simulation-optimization modeling

• Provides effective means to determine tradeoffs between 
alternative instream-flow policies and sustainable levels 
of ground-water withdrawals

• Provides insight into how the hydrogeologic system and 
water-supply demands affect management alternatives



Some Optimization-Modeling Resources
• USGS Fact Sheet:

o “Use of Simulation-Optimization Modeling to Assess Regional 
Ground-Water Systems” (http://pubs.usgs.gov/fs/2005/3095/)

• GWM: a new process for MODFLOW-2000:
o Available through USGS Ground-Water Software site:

http://water.usgs.gov/software/ground_water.html

• Textbook by Ahlfeld and Mulligan (2000):
o “Optimal Management of Flow in Groundwater Systems” (Academic 

Press)


