Pharmaceuticals in Groundwater: Fate, Transport, and Effects, Part I

> William Arnold University of Minnesota Department of Civil Engineering

Overview

- Sources of Pharmaceuticals to Groundwater
- Detection/Monitoring
- Transport
- Potential Effects
- Mitigation Strategies

Routes to the Environment

Specific Sources to Groundwater

- Municipal wastewater
 - Sewage ponds/sewage farms
 - Artificial groundwater recharge
 - Irrigation
- Fertilization with liquid manure
- Manure lagoons
- Landfills

How are they detected?

- Levels range from ng/L to µg/L (ppt to ppb)
- 1-2 L samples
- pH adjustment
- Solid phase extraction (& derivativization)
- GC-MS or LC-MS/MS

What has been seen?

- Source: municipal wastewater
 - Clofibiric acid, lipid regulator
 - Carbamazepine, antiepileptic
 - Iopamidol, X-ray contrast
 - Sulfamethoxazole, antibiotic
- Source: wastewater for irrigation
 - Caffeine
 - Ibuprofen
 - Estrogens

What has been seen?

- Source: lagoons/liquid manure
- Sulfa drugs
- H₂N N

Tetracyclines

What has been seen?

- Source: Landfill leachate
- Sulfa drugs and analgesics
 Grunsted landfill, Denmark
 In operation 1930-1977
 - = 22 different OM/Cs
- 22 different OWCs
 - Landfill in Oklahoma
 - In operation 1920-1985

Suggests long term persistence/transport

Detection summary

- Wide range of compounds
 - Variety of structures
 - Variety of drug classes
- Maximum concentrations 1-10 ppb
- Antibiotics and estrogens of particular concern

Fate/Transport

- Biodegradation is possible for some compounds, especially under aerobic conditions
- Sorption/Retardation
 - Pharmaceuticals don't fit the "standard mold"
 - Acid/base chemistry, (multiple) pK_a's
 - Variety of substituents
 - Strong interactions with mineral surfaces

Fate/Transport

R = 1.4

Fate/Transport

Figueroa et al., Environ. Sci. Technol. 2004, 38, 476

 $K_D = 200-7000$ R = 500-30,000

Potential Effects

Public perception

- Reliability of groundwater resources
- Water reuse
 - Artificial groundwater recharge
 - River bank filtration
 - "Toilet to tap"
 - Irrigation with (treated) wastewater

Antibiotic Resistance

Reprinted by permission of the Milwaukee Journal Sentinel.

Resistance Genes in Groundwater

Chee-Sanford, et al. Appl. Environ. Microbiol. 2001, v. 67 p. 1494.

Potential mitigation strategies

- Improved municipal wastewater treatment
 - Membranes
 - Add-on lagoons/wetlands (mixed success)
- Improved handling of manure
 - Lined ponds
 - Elevated temperature or time to allow degradation to occur before
- Answers will affect irrigation and groundwater recharge