The Unsaturated Zone is NOT a Black Box

2007 WRD Research Lecture Series

Arthur L. Baehr – USGS New Jersey Water Science Center abaehr@usgs.gov

Soil scientist

unsaturated zone guy?

Hydrologist

Why is the unsaturated zone understudied?

- Not a contaminant receptor
- Limited Relevance to Plant Fertility
- Data difficult to collect Multiple phases
- Its not time yet?

... Often conceptualized as a black box despite that we may know about ...

- geology
- residence time (even in the east!)
- Variable mineral content
- Microbes
- a gaseous phase
- water table interface

Spatially variable rechargeand Mineralogic Controls on NO₃⁻ sorption and transport

Natural Attenuation at Gasoline Spills

The atmosphere as a source of MTBE in ground water-

Current Activity and Outreach

Black box - uniform recharge for watershed

Basic data collection only provides an average ...

... but to study chemical loading better resolution is needed

Calculation made in lowermost unit

Mehaffey Nursury C01

Distribution of Recharge Estimates

Median 11.5 inches/yr.

dillution effect?...

... or some other UZ process

unsaturated zone

Black Box Treatment for storage

all nitrate stored in the unsaturated zone is available for transport with recharge

- 8 Km²
 watershed
 Upper
 Deerfield
- Nearly 100% agricultural
- Mostly Bridgeton formation
- 11 sites

NJ Geoprobe

Nitrate

sorption indicated

Sorption coefficient

 $S = K_d C$

- S = sorbed concentration (mg/kg)
- K_d = sorption coefficient (L/kg)
- C = aqueous concentration (mg/L)

Measurements

- T = total conc. in UZ (mg/kg)
- W_{ave} = avg. moisture content (L/kg)
- C = shallow GW conc. (mg/L)

Flux variability--

Not only depends on land use and application rates (black box) but also on Kd and recharge

Mineralogy of Upper Deerfield UZ

(quantitative XRD by Neil Fishman – USGS GD-Denver)

A Contraction	Mineral	Median (wt %)	Min (wt %)	Max (wt %)
	Goethite - FeO(OH)	2.0	0.6	6.5
	Ilmenite - FeTiO ₃	0.5	0.0	5.8
1 State Barris States	Kaolinite - Al ₂ Si ₂ O ₅ (OH) ₄	6.9	1.0	20.7

minerals capable of anion sorption at lower pH

Tropical Soils with high anion exchange capacity similar to UZ sediments of NJ Coastal plain

Latosol

Rich in iron, alumina, or silica. Formed in tropical woodlands under very humid climate with relatively high temperature.

Oxisol Soils with no more than 10 percent weatherable minerals. High concentration of iron (III) and aluminum oxides and hydroxides.

Implications

- UZ storage can be greater than expected for NO₃⁻, SO₄⁻⁻, and Cl⁻ due to sorption
 - UZ can be a significant reservoir for N and other elements and needs to be considered in hydrologic cycles

... Increased residence times imply aquifer cleansing will take longer ...

... Expect same through Atlantic Coastal Plain ...

... Land use ≠ Loading ...

... The UZ is not a Black Box

Current Project Activity

- . Pesticides/Fungicides
- . Field Data
- . Sorption process research

Natural Attenuation at Gasoline Spill Sites-

The black box treatment... All of mass is solubilized and enters gw system eventually...

But...

The Addition of the Gaseous Phase Results in Additional Interfaces to Consider

Gaseous Aqueous Product Solid 6 possible phase interfaces

Product - Aqueous (solubilization) black box

- Product Gaseous (volatilization) TBD
- Aqueous Gaseous (volatilization) TBD

G-S A-S P-S

Scaling Model

Scaling Model Results

Scaling Model - Biodegradation

Degradation / volatilization

Natural Attenuation

science for a changing world

Science for a changing world

Approximate extent of north oil pool, August 1998 modified from Lakehead Pipe Line Co., written commun., 1998

a) 1985, Gas concentrations modified from Hult and Grabbe (1988).

USGS Toxics Hydrology Research

Arthur L. Baehr – USGS New Jersey Water Science Center abaehr@usgs.gov

VOC's Through the Hydrologic Cycle Point or Non-point Sources ?

Source Concentrations of MTBE

<u>Gasoline Spills</u> MTBE ≈ 7500 mg/L BTEX ≈ 100 mg/L

<u>Used motor oil</u> MTBE ≈ 28 mg/L BTEX ≈ 3 mg/L

Auto exhaust

Ambient Environment

- shallow ground water
- atmosphere
- lakes and streams

Location of Glassboro, New Jersey study area

Distribution of MTBE Concentrations In Ambient Shallow Ground Water

Distribution of MTBE Concentrations In Ambient Shallow Ground Water

Distribution of MTBE Concentrations In Ambient Shallow Ground Water

OR

Plume Migration point source(s)

Schematic of Sampling to Achieve Low Concentrations of VOCs in Unsaturated Zone Gas

Black box -

Shallow GW in equilibrium with atmosphere

... but actually....

USGS Toxics Hydrology Research

Arthur L. Baehr – USGS New Jersey Water Science Center abaehr@usgs.gov