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Outline of this talk

" Ground water vs. surface water modeling
approaches

" Conceptual models

" Linking hydrologic and chemical patterns

® Future directions




Groundwater studies

" Little hydrologic data to work with (wells)

" Physics is known->governing equations

" Problem: discretization, model geometry




GROUNDWATER MODELS

" Model geometry—natural patterns™
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Complete the sequence...

" We are trained from an early age
to recognize patterns

" Why has the science of
hydrogeology focused on
mimicking “equivalent
homogeneous porous media”?

® The “silicon siren”




MADE Site-Lessons learned

“‘Recent studies at the Macrodispersion Experiment (MADE) site in
Columbus, Mississippi have indicated that the preferential flow paths
resulting from aquifer heterogeneities at decimeter (dm) and
smaller scales appear to have a dominant effect on plume-scale
solute transport.”

http://pangea.stanford.edu/research/groups/hydrogeology/research.php?rg_id=15&rgpr_id=26




Catchment Studies

" | ots of data

" weirs, piezometers, lysimeters, rain gages,
evaporation pans, etc.

" Geometry is relatively well-constrained

" topography, surface network, subsurface
characteristics

" Governing equations?

" Simplified systems approach works best (‘lumped’
parameter models)
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Figure 4. The measured/interpolated soil moisture of the 0- Figure 5. Assumed spatial distribution of saturated hydraulic
conductivity.

to 60-cm layer on Juné 20, 1994, in Menzingen.

Merz and Plate, 1997



Conclusions from graphical method:
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Main problem:
Storage-discharge relationship

“The challenge is to find appropriate functional forms for
representing the hysteretic storage-discharge
relationship.” (Beven, 2006)

Kirchner, WRR, 2009 dS/dt=P-E-Q

“Sensitivity function”:

9(Q) =dQ/dS

9(@)='('(Q) ;35'1

," f'(S)
l when P<<Q, E<<Q:

9(Q) = -dQ/dt édt




How to estimate the change Iin discharge per
change in storage, g(Q)?
" Hydrograph recession analysis

when P<<Q, E<<Q:

9(Q) = ﬁLédt

Rainless nighttime intervals

-dQdt (mm/hr?)
g 3
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MODEL PREDICTION:

Severn River

Model parameters
determined from
recessions alone;
no parameters
were calibrated to
the time series

345
Day of year 1293

Severn River

id Wye River

65

Day of year 1994




Brutsaert-Nieber Method

(Brutsaert & Nieber, WRR, 1977)

Based on a solution to the Boussinesq equation
(for an idealized, unconfined, horizontal 1-D
aquifer) of the form:

dQ/dt = -aQ®

e aand b are constants

 The equation above defines a linear lower
envelope on a log-log plot of the slope of the
hydrograph (dQ/dt) vs. Q
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Conceptual model of a catchment
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How do recessions reveal contributions
from storage?

" Use ambient tracers (chemistry and
isotopes)

" CATCHMENT EXAMPLE

= Sleepers River Research Watershed, Vermont

" KARST EXAMPLE

" Classical karst, Slovenia/ltaly
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Sleepers River, W-9
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1999 shnowmelt

Hillslope till

¢
’6" “ Riparian

‘ - -
vv -

: v ¢ Stream W-9B
| A 4 StreamW_g“‘-----llll._
vV 4 T L
| Soil Water “,"‘
‘ .
4 0“ ' A
.‘Az‘ y
- v
"l sanuwm®®
|V ~ e

Hillslope hollow
piezometers

—~~
-
~~
n
Q
®)
S
=2
N
c
9
e
©
| -
)
c
()
O
-
)
&
M®
9
7))

Calcium concentration (ueq/L)




Piezometers
in upstream

hollows




Hydraulic conductivity [mm/h] A

Sail maisture [vol-%]
<15

16- 20
20-25

26- 30
>30

1] 500 1000 m

1] 500 1000 m

Figure 4. The measured/interpolated soil moisture of the 0- Figure 5. Assumed spatial distribution of saturated hydraulic
conductivity.

to 60-cm layer on Juné 20, 1994, in Menzingen.

Merz and Plate, 1997



Extent of
Surface
Saturation

Extent of
Vertical
Saturation at
Hillslopes

Source
Availability in
the Landscape

Streamflow
and Salute
oncentrations

Flowpath
Contributicns

Sebestyen et al., 2008
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Karst studies

" Good discharge data

" Poorly constrained geometry

" Governing equations? Pick your favorite




Conceptual Model of a Karst Aquifer:

Borehole

,  3INOZ

ANOZ 3S0d VIiHHd
|

Lakey & Krothe, WRR, 1996

O bo




Karst spring recession behavior

Rain Event Hydrograph
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Doctor & Alexander, 2005
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%® Water table cave
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The Timavo Springs: Low flow







Oxygen isotopic compositions of Kras waters 1998-2000
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Timavo Discharge (1995-2000)
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Representative hydrograph recession of the Timavo springs

(Jan. 23 - Oct. 20,1997)
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Monthly Precipitation (mm)
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Chemical change with flow regime

Average Ca/Mg ratio according to flow regime

Karst water (Ca/Mg = 40)
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Timavo Discharge
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Principle Components Analysis (PCA) and
End Member Mixing Analysis (EMMA)

PCA - Factor analysis
Reduces numerous parameters into a smaller set of new
variables (“components”) which account for the majority
of the data variance.

EMMA - Mixing analysis

Project observed samples and estimated end-members
into 2D mixing space, and calculate proportions of each
end-member contained within each observed sample.




PC-space Mixing Diagram
Well B-4 Storm Events, 2000 (6-parameter PCA/EMMA)
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Measured vs. predicted chemistry and isotopic
composition at well B-4 during storm events of 2000
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Can this approach work across different scales?

Recession Hydrographs
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Baedke & Krothe, WRR, 2001



WELL HYDROGRAPHS IN KARST
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Scaling in Minnesota
KARST?

Upper lowa River:

Drips in Mystery Cave

Natural log of discharge (cfs)

In [average daily drip rate] (L/hr)

Upper lowa River
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Why the abrupt breaks in

Abrupt breaks in conduit dimension?

Photo by Allen Lewerer




Conduit aperture distribution:

Blue Spring Cave, IN

T 15m

Aperture width (m)

Data: Palmer and Palmer, personal comm.



Conduit aperture frequency:
Multiple fractal dimensions?

Blue Spring Cave, IN
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Preferential flow is the norm

" Vadose zone: root casts, burrows,
dessication cracks, rock fractures

" Interflow: permeability change across
soil/bedrock interface, soil hardpans,
calcrete

" Alluvium: sand & gravel channels/stringers
" Bedrock: fracture flow

= Karst: conduit flow

" (Mantle channel flow?)




What are some common patterns in
hydrology?

" Recession slopes of hydrographs
Hysteresis
Diel periodicity
Fractal networks
Power-law relations in time series spectra




Linking chemistry to discharge

Patterns in chemical data are as prevalent as
patterns in physical hydrologic data

Hysteresis

Spatial distribution of chemical end-
members

Repetition in chemical “signatures”™
according to flow regimes




What lies ahead?

It may seem strange to end a review of modeling with an observation that future
progress is very strongly linked to the acquisition of new data and to new
experimental work but that, in our opinion, is the state of the science.

George Hornberger and Beth Boyer, 1995

" High frequency data collection
" Wireless distributed smart sensors (“motes”)

" Data Based Modeling




A rebirth of empiricism in hydrology

" Lumped parameter rainfall-runoff forecasting
" Kernal functions

" Convolution

" Artificial Neural Networks

= Lattice-Boltzmann models










VADOSE ZONE PROCESSES IN KARST:
Mystery Cave, MN

Coon Lake Drips: Mystery Cave, MN
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Coon Lake Drips: Recessions

Coon Lake Drip Recessions
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Coon Lake Drips: Master Recession Curve

CLD Master Recession Curve
(ideal segments and real recessions)
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Hysteresis: Coon Lake Drips

Coon Lake Drips: Drip rate vs. Conductivity
(Hysteresis loops)
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Utility of Recession Analysis?

= Aquifer hydraulic parameters (or not)

" Flow regimes and aquifer storage volumes
" Characteristics of conduit geometry

" |dentifying possible scaling effects




Conceptual Model of a Karst Aquifer:

Borehole
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Streamflow Probability Density Function
(pdf)

" Comparison between analytical and observed streamflow pdf's
in the West Swan River catchment (47°, 14° 40", 93° 02* 30",
Minnesota, USA) during the summer season. The pdf of the
observed streamflows in the West Swan during the period
1963-1979 is shown by circles. The dashed line refers to the
linear model of Botter et al. [2007a], while the nonlinear pdf

derived in this paper (equation (19)) is reported by the solid
line. The parameters used in the linear model can be found in
the work by Botter et al. [2007c, Table 1]. The same parameters
are employed also by the nonlinear model, except for the mean
residence time in subsurface. The latter must be replaced by
the parameters a and b, which are derived from the analysis of
the recessions observed (in this case a = 2.88 and b = 0.8)




Physical & Probabilistic “Diffusion”

" Fourier and Laplace: separate approaches to
similar conclusion

" Navier-Stokes: physical diffusion
" Chemical tracers: rapid peaks, long tails

" Tracer models: combined exponential and
piston-flow models mimic travel times.

= Earliest response at springs Is water
displaced from stagnant conduits
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Master Recession Curve of the Timavo springs
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Discharge of the Timavo springs (1995-2000)
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MASTER RECESSION CURVE

" Defines multiple flow regimes of each recession
period in terms of multiple recession indices (i.e.
transmissivities)

...but what can | do with 1t?

" Quantifiable, reproducible, and interpretable
means of relating chemistry to discharge




Flow Regime §'°0 at Timavo
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8"°C, . at Timavo
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EMMA!

(End-Member Mixing Analysis)

" Group chemistry samples according to defined
flow regimes

® Calculate relative contributions of end-members
to measured stream chemistry within each flow
regime

" Working within a subset of chemical data easier
and more informative
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Importance of Event Sampling:

" High-frequency data collected over shorter
time intervals can yield greater amount of
useful information than monthly or even

weekly monitoring
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Measured vs. predicted chemistry and isotopic composition at Well B-4
during storm events of 2000
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Representative Elementary Watershed (REW)

Use of mono-valued characteristic functions (as in nearly all profile or hillslope scale hydrological
models) is already a departure from our understanding of the physical principles that underlie
hydrology.

The challenge then is to find appropriate functional forms for representing the hysteretic storage-
discharge relationship given (generally) very little information about the internal characteristics of
the unit, very little observable data in the way of storage or discharge measurements at the unit
scale, and no theoretical framework on which to base such a representation.

Tracer experiments that suggest that in many small catchments, the hydrograph is dominated by
the displacement of pre-event water. The difference can be illustrated simply within a simplified
kinematic wave description of the flow processes but in reality is much more complex because of
the effects of heterogeneities, immobile storage, fingering and preferential flows. The storage
discharge response will be governed primarily by the celerities with which pressure effects are
transmitted through the system. We still have much to learn about the details of this, particularly in
unsaturated soils.

These questions are the second most important problem in hydrology of the 21st
Century. The most important is providing the techniques to measure integrated
fluxes and storages at useful scales).

Beven, 2006




