State-of-the-science tools for measuring arsenic speciation in glacial sediments

Brandy M. Toner

Department of Soil, Water, and Climate

University of Minnesota

Collaborators

U.S. Geological Survey

Melinda Erickson, Laurel Woodruff

Department of Natural Resources –

Division of Waters

James Berg

Minnesota Department of Health

Richard Soule, James Lundy

Minnesota Geological Survey

Harvey Thorleifson, Alan Knaeble, Carrie Jennings, Gary Meyer, Barb Lusardi

The U of M Team

Lindsey Briscoe, Sarah Nicholas, Ryan Lesniewski DNR core archive facility

Metal Partitioning in the Environment

<u>Research</u>

- (1) Concentration
- (2) Distribution
- (3) Bioavailability

Approach

- (1) Molecular-level
- (2) Speciation
- (3) Mechanistic
- (4) Spectroscopy

Metal Partitioning in the Environment

Examples of Speciation

- Aqueous complexes
- Adsorbed
- Precipitated

These are all of influenced by mineral surfaces & microbial activity

Overview - 1

- Arsenic in domestic well water is a problem in Minnesota
- Arsenic is naturally occurring trace element
 - -- values < 10 mg As / kg
- Arsenic in well water correlated with:
 - -- glacial deposits
 - -- well construction/placement choices
 - -- Melinda Erickson

Overview - 2

Mineral phases hosting arsenic are not known

 Correspondence between stratigraphy and geochemistry not known

- Start at the beginning:
 - -- mineralogy
 - -- arsenic speciation

Arsenic Trace Element & Contaminant

- Drinking water is the primary exposure
- [As] = $10 50 \mu g/L$ increases risk of cancer
- EPA definition of "elevated" [As] > 10 μg/L

Arsenic-bearing glacial sediments

Risk Factors

Well screen placement/construction Proximity to glacial contacts

- (1) Arsenic in glacial sediments
- (2) Risk Factors: well screen proximity to glacial contacts

Little nagging question...

...why is arsenic still a problem in new wells?

Complexity – Heterogeneity - 1

Distribution of elevated [As] wells enigmatic:

- -- wells in close proximity
- -- wells with similar depth
- wells with similar properties aqueous geochemistry
- -- **different** [As]

Complexity – Heterogeneity - 2

Des Moines Lobe tills = complex group of glacial deposits

- -- variable source materials
- -- not all strata have elevated [As]

Some elevated [As] wells screened in older, pre-Wisconsin age tills

Open Questions

- Which formation(s) are the source of the arsenic?
- What are the primary mineral phase(s)?
- Do stratigraphy and geochemistry correspond in formations?
- Can we predict arsenic vulnerability in west-central Minnesota?

New Focus

- All evidence -- source of arsenic to groundwater is naturally occurring *minerals*
- Shift focus from aqueous phase to solid phase
- Start by identifying the source(s) of arsenic

Solid Phase Speciation

 A single element may exist in many different chemical forms

 Chemical form or *speciation* determines its behavior in environment

Measuring Solid Phase Arsenic Speciation

- (1) Synchrotron Radiation
 X-ray Absorption Spectroscopy
- (2) Sequential Extractions
- (3) Glacial sediments
 - -- aquifers (sand-gravel)
 - -- confining layers (tills)
 - -- interfaces (contacts)

X-ray Absorption Spectroscopy (XAS)

Advantages – Capabilities

- Elementally specific
- Sensitive to valence state
- Sensitive to the local bonding environment
- Choices in spatial resolution
- Environmentally relevant conditions

Where to get X-rays?

- Synchrotron Facilities
- Department of Energy
- Berkeley, CA
- Argonne, IL

Photo credit: Roy Kaltschmidt

http://www.als.lbl.gov/als/als_users_bl/bl_layout.html

Samples

- (1) Begin with archived rotary sonic drill cores (RED) DNR, Lands and Minerals Drill Core Library, Hibbing, MN Thanks to Rick Ruhanen and Jordan Goodman
- (2) Participate in new drillingMinnesota Geological Survey (BLUE)

Samples - 1

Archived Rotary Sonic Cores

TG-1	255368
TG-2	255369
TG-3	255370
TG-4	255371
TG-5	255372
TG-6	255373
TG-7	255374
OTT-3	251486
UMRB-2	20341
UMRB-3	20343
SR-4	249857
TR-3	256716

Samples - 1

10 Cores / 250 samples

Counties

Traverse, Grant, Stevens, Douglas, Pope, Big Stone, Swift

Samples - 2

10 *fresh* cores / 426 samples

CountiesSibley, Nicollet, and Blue Earth

Useful Tools: "bulk" XAS

Glacial sediments

aquifers (sand-gravel) confining layers (tills) interfaces (contacts)

Method Question

Can we measure As < 10 mg/kg?

Facility

Advanced Photon Source Argonne National Laboratory

Answer

Yes we can!

X-ray absorption near edge structure (XANES) spectroscopy

Results

- -- Can detect 4 mg As/kg
- -- See spatial heterogeneity
- -- Reduced As present

Nicholas & Toner (unpubl)

Useful Tools: Microprobe XAS

Microprobe XANES spectroscopy

Proportion of Arsenic Valence States Microprobe XANES spectroscopy

Notes: (1) From linear least squares fitting

- (2) Distribution of valence states in archived cores
- (3) Upper Minnesota River Basin, core 2, 175 ft depth
- (4) Ottertail County. Core 3, 73 ft depth

Next Step

Improve Sample Coverage

- -- Point-to-Point
- -- Pixel-by-Pixel
- -- "Chemical Mapping"

Pixel-by-pixel

As(5+)As(3+)As(1-) Chemical mapping

FeMnCa

Conclusions

- Using As XAS spectroscopy we can
 - Identify (and quantify) As valence states in archived tills
 - As(5+), As(3+), As(1-)
- Detection limit is appropriate for trace As in solid phase
- Archived rotary sonic cores are valuable for the study of As geochemistry
- We have a lot of work to do!

Integration Steps - 1

- All samples by sequential extraction
- Sub-set of samples by XAS
- Add speciation data to GIS database
- Geospatial analysis
- Mapping

Integration Steps - 2

Dream 1

Sub-surface arsenic speciation mapped with stratigraphy

Dream 2

Arsenic vulnerability map for regions of MN

Acknowledgments

Center for Urban and Regional Affairs
Faculty Interactive Research Program
http://www.cura.umn.edu/

"Arsenic Vulnerability Maps for New Domestic Wells in West-Central Minnesota"

Thank you!

Understand Distribution of Arsenic

Best Practice

- Strategic placement of wells
- Probability of clean water is highest

To achieve this goal we must understand

- Arsenic source(s)
- Bio-geo-chemical processes
- Human choice/activity

Measuring Solid Phase Arsenic Speciation

Arsenic speciation in the solid geological materials will be accessed with three different techniques:

- (1) total arsenic and associated geochemical composition in the solid phase;
- (2) distribution of arsenic forms among species that are defined operationally to estimate arsenic *lability* the likelihood of release to groundwater from solids; and
- (3) direct spectroscopic measurements at the micron spatial scale to define exactly the arsenic speciation in particles composing the sediments.