Groundwater Considerations for Gravel Mining at UMore Park: Background, Groundwater Modeling, and Monitoring

Minnesota Ground Water Association Spring Conference May 6, 2010

Jim Aiken, PG; Evan Christianson (Barr Engineering), and Cale Anger (University of Minnesota)

4700 West 77th Street, Minneapolis, MN Contact: jaiken@barr.com

University of Minnesota's Outreach, Research, and Education Park

(aka the Rosemount Agricultural Experimental Station)

Resource Development

- University commissioned a gravel resource survey (ProSource, 2008)
- Conducted 600+ borings over 5,000 acres
- Found extensive gravel deposits up to 100+ feet thick
- Estimated 100 Million+ Tons of Gravel
- Identified the UMore Mining Area (UMA) for future resource development

Gunpowder Plant

Smokeless gunpowder = Nitrocellulose, Dinitrotoluene, Diphenylanaline, and Dibutylpthalate

NOT a Munitions Works, NOT a High Explosives Plant

Project Description

- Phased Mining
- Surface Mining
- Open Water
- No Dewatering
- Gravel washing
- Production well

Key Issues for Mining EIS

- Effect of thermal transfer from mine lake
- Effect of mining on existing releases both documented and presumed
- Drawdown effects on water resources
- Sustainable withdrawals related to mining
- Effects of mining and possible releases on drinking water aquifers
- Effects of mine pit lake on future groundwater flow/resource

DEIS and Related Investigations

- DEIS for UMA Gravel Mining (2008...)
- Hydrogeologic Assessment (2008-09)
 - Site stratigraphy/Geologic Concept Model
 - Groundwater flow direction, rate, etc.
- Groundwater Modeling (2009-2010)
 - Model Development
 - Predictive Simulations for DEIS
- Baseline Monitoring/Evaluation (Cale Anger U of M)
- Environmental Investigations (2009...)

Path Forward: Groundwater Modeling

Overview

- Hydrogeologic assessment
- Development of groundwater flow model
- Using groundwater model to evaluate:
 - Effects of mining on groundwater
 - Simulation of future conditions
 - Using modeling results to help guide mine planning

Hydrogeologic Assessment

- 13 Monitoring wells installed
- I Pumping Well
- 4 Additional Pilot borings
- Refine geology
- Aquifer Testing
- Develop conceptual model

Pilot Borings and Monitoring Wells

Pilot Boring Location

UMore Park Boundary

Till Extent

Bedrock Topography

Geologic Cross Section

Geologic Cross Section

Conceptual Model

Groundwater flow to the northeast toward Mississippi River

Conceptual Model

Groundwater Flow Model

Purpose

- Test conceptual model of groundwater flow
- Test hypotheses regarding potential impacts
- Evaluate possible mitigation solutions

Model Domain

TMR of Metro Model 2

Model Domain

- Metro Model 2

 used to help define
 boundary
 conditions
- Two additional layers added to better simulate flow in the Quaternary sediments

Model Cross Section

Till (Qt)

Α

Outwash / Quaternary Undifferentiated (Qo)

- St Peter Sandstone (OSTP)
- Prairie du Chien Group (OPDC)
- Jordan Sandstone (CJDN)

St. Lawrence Formation (CSTL)
Tunnel City Group
Wonewoc Sandstone
Eau Claire Formation (CECR)
Mt. Simon Sandstone (CMTS)

Α'

Groundwater Flow From UMA

Predictive Simulations

- Sustainable pumping
- Effect of mining related impacts on future groundwater resources
- Future municipal demand and future DWSMA

Surface Mater Balance (SWB) Model

Adapted from Dripps and Bradbury, 2007

Conceptual Water Use

Groundwater flow during mine development prior to formation of pit-lake

Change from current conditions during mine development prior to formation of pit-lake

- Drawdown of ~ 0.1 feet near boundary
- Slight increase in water level near settlement basin

Pit-Lake Compared to Lake Nokomis

Pit-Lake Compared to Lake Elmo

Groundwater flow during mine development after formation of pit-lake

Flow still to the northeast to Mississippi R. Slight divergence of flow near shore of pitlake

Change from current conditions during mine development after formation of pit-lake

- Reduce hydraulic gradient in footprint of lake to near zero
- Decrease in water levels up-gradient
- Increase in water levels downgradient
- Overall, increase in groundwater levels

Increase in municipal demand

- Rosemount
 - 2008 = 910 million gallons
 - 2050 = 3.6
 billion (estimated, Metropolitan
 Council)
- Empire Township
 - 2008 = 80 million gallons
 - 2050 = 517
 million gallons
 (estimated)

Capture Zones

Future DWSMA and Aquifer Vulnerability

GROUNDWATER MONITORING AT UMORE PARK

BASELINE DATA ASSESSMENT AND GROUNDWATER EVALUATION

University of Minnesota Outreach, Research, and Educational Park (UMore Park)

Cale T. Anger E. Calvin Alexander Jr.

Department of Geology and Geophysics University of Minnesota – Twin Cities

Overview

- 1. Review of Project Goals and Objectives
- 2. Groundwater Assessment Update
- 3. Sustainable Groundwater at UMore Park

Project Goals and Objectives

Groundwater Assessment

1. Historical Groundwater Trends

- Compilation of groundwater data from previous site investigations.
- Determine historical flow patterns.

2. Current Field and Modeling Data

- Constrain modern groundwater elevation, temperature, and geochemistry through point and time-series groundwater monitoring at UMore Park.
- Couple large datasets and groundwater models to define pre-aggregate mining groundwater characteristics.

Project Goals and Objectives

- **Sustainable Groundwater at UMore Park**
- Continued Monitoring of Basic Groundwater Characteristics

 inexpensive
 multipurpose
- 2. *Hydrologic and Recharge Modeling*

- future assessment and calibration of models developed for the EIS

Groundwater Monitoring & Analysis

- Monitoring Locations & Data Collection
 1. Monitoring Wells
- Regional Groundwater Flow
 - 1. Temporal and Spatial Groundwater Variability
- Physical Groundwater Characteristics
 - 1. Temperature
 - 2. Specific Conductivity
 - 3. Geochemistry

Monitoring Locations & Data Collection

Monitoring Wells – On and Off Site

Regional Groundwater Flow

Groundwater Variability

- Spatially, groundwater elevations range from 857 ft MSL to 887 ft MSL at the designated monitoring wells.
- Temporally, groundwater elevations vary between
 0.1 and 1.1 ft during the sampling period. MW-PDC-C5-T00006 is an exception, with a 4.21 ft change.
- Possible recharge response in shallow aquifer in late March

Monitoring Well Groundwater Elevations UMore Park Hydrogeologic Monitoring and Assessment Dakota County, MN

MW-D3-007 Unique Well ID: 769490

MW- PDC – C5 -T00006 Unique Well ID: NA

Groundwater Geochemistry

Environmental Chloride/Bromide Ratios

Seaw ater	3 00 :1
Minnesota Rain	200-250:1
Manure	5 00-1,000 :1
Wastew ater	1, 000-2,000 :1
KCI fertilizer	1 0,000 :1
Road/Water Softner Salt	> 20,000 :1

Sustainable Groundwater at UMore Park

The Role of Future Monitoring at UMore Park

- Assessing physical and chemical groundwater variability *during* and *after* aggregate extraction.
- Monitoring the effects of mine lakes on aquifer recharge.
- Assessing the impacts of increased municipal demand and future development near the property.
- Creation of a comprehensive monitoring database

Project Summary

Understanding background groundwater characteristics and forecasting future hydrologic changes are integral parts of effectively managing the aquifers at UMore Park.

This analysis assesses the following:

- 1. Defining baseline physical and chemical groundwater variability in the Q and PDC aquifers.
- 2. Surveying future monitoring and modeling needs for the property, focusing on impacts from aggregate extraction and regional development
- 3. Creation of a comprehensive monitoring database Agricultural Use -> Aggregate Mining -> Regional Development

Comments or Questions?

