The Role of Groundwater in Watershed Studies

MGWA Spring Conference

May 4, 2011

Andrew Streitz

Today's Goals

 Describe the first groundwater model constructed for MPCA TMDL studies;

 Demonstrate that trends observed at this local scale are operating state-wide;

3) Suggest a connection between the hydrologic trends.

Study Area

Topography: Surface Elevation

Precipitation in Minnesota An Areal Average

Groundwater Levels: Obwell 5004

Statistically significant decline, p= 0.01

High Capacity Wells

Groundwater Pumping in the Watershed

Statistically significant to p= 0.01

Creek Discharge with Time

Model Specifics

- MODFLOW running within GMS v.7;
- Two Steady-state models built to represent pumping (Summer) and non-pumping seasons;
- Single layer system;
- Pilot points used for Recharge, single polygon for hydraulic conductivity;
- Calibrated to seven flow gaging stations on three streams;
- Calibrated to nine observation wells.

Model Results

The Little Rock model found that the high capacity groundwater withdrawals were reducing flow in the creek. In consequence, altered flow of groundwater was labeled as a primary cause of stream impairment.

Model Scenarios: What Happens If Pumping is Reduced?

Algae Blooms in August 2007

Photo by Amy Robak, Benton SWCD

Study Parameters

Time Period

1991 – 2009

Datasets

- Water Appropriations: DNR SWUDs
- Observation Wells: DNR Obwell Network
- 3. Stream flow: USGS & DNR/MPCA Coop. Gaging
- 4. Precipitation: Western Regional Climate Center
- Statistical tests

Mann-Kendall nonparametric & Sen's Method

Consumptive Withdrawals by Source

Increasing Trends that are statistically significant to p= 0.001

Locations of Permitted Withdrawals

http://www.dnr.state.mn.us/waters/watermgmt_section/appropriations/wateruse.html

What is a Gaging Station?

Grouped Hydrographs High Island Creek near Henderson

High Island Creek- Summer flow

Distribution of Significant Trends

Middle River- No Trend

Clearwater River- Decreasing Trend

Straight River- Decreasing Trend

Chippewa River- Decreasing Trend

High Island Creek- Decreasing Trend

Corn Production Trends

Million Bushels

Histogram of Dew Point Record Highs in July & August

Statistically Significant Increasing Trend

Conclusions

- The Little Rock groundwater model found probable cause and effect between increasing pumping and decreasing summer flows.
- This relationship is supported at a state-wide scale by a weight of evidence comparison of stream flow and water withdrawal trends.
- The MPCA now has a method for prioritizing watersheds for further groundwater investigation.

End