Hydraulic Conductivity of Minnesota Confined Glacial Aquifers

R. G. Soule
Minnesota Department of Health
R. J. Barnes
University of Minnesota

Overview

- Well by well comparison of pumping test and specific capacity test estimates of hydraulic conductivity (K).
- Explore the additional information afforded by using specific capacity test K values.
- Consider the limitations of these tests.

Pumping and Specific Capacity Tests

"Gold Standard" N = 239

N = 70,773

Pumping and Specific Capacity Test Pairs

- Must have the same unique well number*,
- Must have verified location*,
- Must be sufficient well construction and geologic information*,
- Must be analyzed in a similar fashion.

^{*}County Well Index (CWI) Minnesota Geological Survey

Estimating Specific Capacity Test Transmissivity

Cooper-Jacob with partial penetration*:

$$T = \frac{Q}{4\pi s} \left[ln \left(\frac{2.25 T t}{r_w^2 S} \right) + 2s_p \right]$$

where

$$s_p = \frac{1 - L/b}{L/b} \left[ln \left(\frac{b}{r_w} \right) - G \left(\frac{L}{b} \right) \right]$$

And the function G is:

$$G\left(\frac{L}{b}\right) = 2.98 - 7.363 \frac{L}{b} + 11.447 \left(\frac{L}{b}\right)^2 - 4.675 \left(\frac{L}{b}\right)^3$$

*Bradbury and Rothschild (1985)

Required Well Information

- Screened interval (L)
- Radius (r_w)
- Aquifer thickness (b)

Aquifer Thickness Problem

- Many wells do not have lower confining layer information.
- Option 1: Use the observed "minimum" thickness.
- Option 2: Estimate from the known thicknesses.

Estimating Aquifer Thickness

Tests Requirements

Pumping Tests

- Sources: Federal (USGS), State (MDH, DNR & MPCA), consultants, well drillers and publications.
- Analysts chosen Transmissivity.
- Cooper-Jacob or Theis methods.

Specific Capacity

- Source: CWI
- Pumping rate (Q)
- Duration (t)
- Drawdown (s)

N=100 Pairs

The Comparison Set

AVERAGE WELL INFORMATION		
YEAR BUILT	1985.4	
CASING DIAMETER [INCH]	11.9	
DEPTH [FT.]	174.5	
SCREEN LENGTH [FT.]	29.3	
KNOWN AQUIFER THICKNESS [FT.] (N=56)	50.5	
MINIMUM AQUIFER THICKNESS [FT.] (N=44)	50.0	

WELL USE	PERCENT
PUBLIC WATER SUPPLY	60%
IRRIGATION & INDUSTRIAL	35%
PUMP OUT	3%
TEST & MONITORING	2%

AVERAGE TEST INFORMATION	Pumping Test	Specific Capacity
DURATION [HOURS]	24	16
DISCHARGE [GPM]	605	664
TESTS WITH OBSERVATION WELLS [%]	76%	0%
ESTIMATED STORATIVITY	4.5E-03	1.5E-03

Specific Capacity and Pumping Test Comparison Known Aquifer Thickness

Specific Capacity K (K sc)

Pumping Test K (K $_{\rm pt}$)

$$R^2 = 0.50$$

31 Overestimates

25 Underestimates

Specific Capacity and Pumping Test Comparison Minimum Aquifer Thickness

Specific Capacity K (K sc)

Pumping Test K (K pt)

$$= 0.72$$
 $R^2 = 0.48$

19 Overestimates25 Underestimates

Specific Capacity and Pumping Test Comparison Estimated Aquifer Thickness

Specific Capacity K (K sc)

Pumping Test K (K pt)

= 1.03

 $R^2 = 0.49$

27 Overestimates

21 Underestimates

Specific Capacity and Pumping Test Comparison

Specific Capacity K (K sc)

Pumping Test K (K _{pt})

= 0.99

 $R^2 = 0.50$

58 Overestimates46 Underestimates

Additional Information from Specific Capacity Tests

- Apply the same methods to estimate K for the remaining 70,673 specific capacity tests.
- Compare the local specific capacity tests to the pumping tests.
- Evaluate spatial correlation of K values.

Frequency Distributions of K

- Both test types have lognormal frequency distribution.
- Not the same populations.

Tests	Median K [ft./day]
100 Pumping Test	132
70,000 Specific Capacity Tests	27

- Heuristic for 50% range:
 - Lower = mean/2
 - Upper = mean * 2.5

Spatial Correlation of Pumping and Specific Capacity K

Normalize between pumping test wells:

Specific Capacity K (K sc)

Pumping Test K (K pt)

Excluding the K_{sc} of the Pumping Test Well

From (ft.)	To (ft.)	Mean K _{sp} /K _{pt}
0	500	116%
500	1000	92%
1000	1500	49%

Spatial Correlation of Pumping and Specific Capacity Tests

— Specific Capacity K / Pumping Test K 95% Confidence Boundary

 $K_{sp} > K_{pt}$ within 500 m. of pumping test wells

 $K_{sp} / K_{pt} \approx 90\%$ between 500 and 1000 m.

Beyond 1000 m $K_{sp} / K_p \approx 35 \text{ to } 45 \%$.

Distance from Pumping Test Well [m]

Spatial Correlation of Specific Capacity Tests

Source of Variability	Amount
Noise	41%
Small Scale Spatial Variability	20%
Large Scale Spatial Variability	39%

Conclusions for Confined Glacial Aquifers

- A pumping test is more valuable than a specific capacity test.
- Specific capacity K values are consistent with pumping test K values.
- Specific capacity K values are "noisy".
- Hydraulic conductivity is spatially related.
 - Change exponentially over a few kilometers.
 - Change linearly over hundreds of kilometers.
- Pumping tests in this data set are located in higher hydraulic conductivity zones.