

### Outline

- Motivation
- Research Question
- Methods & Results
  - ET Model
  - Regression Model
- Future Directions

# Land-Use Change

# CUMULATIVE NUMBER OF HIGH CAPACITY WELLS IN ADAMS, PORTAGE & WAUSHARA COUNTIES



WDNR Well Construction Report Data, 2010

## Factors Affecting Lakes & Streams

- Lake morphology
- Hydrology
- Natural variability in weather

- Land-use patterns
- Human water use
- Climate change







# $\Delta S$ torage = Inflow - Outflow $\Delta S = P + GW_i - GW_o + Q_i - Q_o - ET$







# Research Question

Has there been a change in groundwater levels due to irrigation high capacity well pumping in the Central Sands of Wisconsin?



#### **Model Overview**





## **Evapotranspiration Model**

- Data sets: 1950-2007
  - Kucharik
    - Temperature
    - Precipitation
  - National Centers for Environmental Protection
    - Wind speed
    - Relative humidity
    - Radiation (Solar and Net)
- Locations
  - Hancock
- Crop and Soil Type
  - Corn and Sandy Soil



### **ET Model Results**



### **ET Model Results**





### Water Balance -> Regression

$$\Delta S = P + GW_i - GW_o + 2G - ET + 2G - IR_o$$

#### Assumptions

- $-\Delta S \propto \Delta GW$
- *GWi* − *GWo*  $\propto$  GW elevation

#### • Terms:

- $-\Delta S = Change in storage$
- P = Precipitation
- GW = Groundwater
- Q = surface flow
- ET = Evapotranspiration
- IR = Irrigation
- -i = inflow
- o = outflow



# Regression Model

$$G_{N_{365}}-G_{N_0} = \beta_0 + \beta_1 [P_N - E_N] + \beta_2 G_N + \beta_3 I_N + e$$

- Study site: Hancock
- Terms:
  - I = Cumulative number of high capacity wells
  - e = error



# Regression Model Results



| Regression Statistics |              |
|-----------------------|--------------|
| Multiple R            | 0.86         |
| R-Squared             | 0.74         |
| Standard Error        | 0.71         |
| Observations          | 56           |
| Coefficients          |              |
| Intercept             | -3.44        |
| Avg Annual GW         |              |
| Elevation             | -0.01        |
| Avg Annual P-ET       | <b>3</b> .74 |
| Cumulative #          |              |
| Wells                 | -1,13432     |
|                       |              |

p = 1.07E-16

p = 2.66E-4

In the region of Hancock in the Central Sands of Wisconsin, groundwater pumping used to support irrigated agriculture has decreased recharge and, thus, water available for lakes and streams.

#### Where are we at?

#### • Identify problem

- Quantitative characterization of hydrologic cycle with and without irrigation
- Uncover conflicting community values and priority areas

#### Establish Process

- Stakeholder Engagement
- Groundwater modeling & scenario building

#### Identify potential solutions

- Improve water delivery efficiency / precision agriculture
- Agricultural innovations and land-use change (e.g. crop choice, genetic modification)
- Ditch management

#### Quantify variables

- Quantification of environmental impacts of pumping
- Quantification of reductions in pumping at specified locations
- Optimization of temporal and spatial distribution of pumping reductions
- Multiple criteria decision-making analysis tools

#### **Next Steps**

- Small scale, high resolution transient groundwater flow modeling
- Collaboration with graduate students and stakeholders





## Acknowledgements

- Ken Potter, Civil and Environmental Engineering Department
- Sam Kung, Soil Science Department
- AJ Bussan, Horticulture Department
- Mack Naber, Soil Science Department
- Wisconsin Institute for Sustainable Agriculture

### References

- Joachim, D. 2011. Modeling the Impacts of Future Climate Change on Groundwater Recharge and Evapotranspiration in Wisconsin. Master's thesis.
- Kucharik, C. J., S. P. Serbin, S. Vavrus, E. J. Hopkins, and M. M. Motew. 2010.
  Patterns of Climate Change Across Wisconsin From 1950 to 2006. Physical Geography 31:1-28.
- Naber. 2011. One-dimensional, soil-plant-atmosphere modeling of the Wisconsin Central Sand Plain to Estimate Evapotranspiration and Groundwater recharge under different vegetation types. Master's Thesis.

Questions?

### **Discussion Questions**

- What rights do landowners have on "their" property? What rights do non-human living organisms have on land?
- Can/should the federal or state government limit water use? If so, what strategies should they use? If not, how else could the resource be managed?
- How does science and technology play a role in addressing water resources management?
- Is applied science a "true" science?
- How do applied scientists contribute to the scientific community?
- What is the role and purpose of science within our culture and government?
- What constitutes a renewable resource?
- What does adaptive management mean to you? How would you try to implement adaptive management?

# **Ground Penetrating Radar**

