Challenges of Protecting and Restoring a Groundwater - Dependent Prairie Stream: Iron Springs Creek, Southeastern North Dakota

Phil Gerla

Midwest Groundwater Conference 2012
Groundwater Opportunities and Conflicts in the 21st Century:
Economy to Ecology

Protecting nature. Preserving life.™

Some Key Background Points –

- 1. Groundwater dependent (GWD) streams often have exceptional ecological, aesthetic, and recreational value
- 2. Management of GWD streams cannot be complete without considering surface water groundwater interaction
- 3. Different regulatory and best-management practices may be needed for protecting the integrity and function of GWD streams

Sheyenne Delta of southeastern North Dakota hosts a few unique groundwater-dependent streams and wetlands

Purpose of the presentation — Case study that demonstrates how drainage mismanagement irreversibly damaged Iron Springs Creek

Why these few seeps and streams are important -

Wetland / dune habitat – western prairie fringed orchid Drought-resistant woods and prairie Host relic ice-age plants Endemic fish and unusual macroinvertebrates Groundwater storage and release moderates downstream flow

Iron Springs – former headwaters for a 6-km groundwater-dependent stream

Iron Transport in Circumneutral Groundwater

Iron Springs Drain No. 10.

Notice of assessments, Review of assessments and letting of Contract

State of North Dakota, } ss. County of Richland. } ss. Sec. 20, Twp. 134, Range 52, 164 degrees 46 minutes 30 seconds E. a distance of 448.90 feet to the north and south quarter line of Commissioners. said section, thence north follow-In the Matter of the Esing said quarter line a distance of tablishment of a Drain Sec. 21, Twp. 184, Range 59, 5017.65 feet, thence at an angle of 157 degrees 51 minutes 30 seconds E. a distance of 720 feet, thence at an Richland

What were the consequences to Iron Springs and Iron Springs Creek?

1 km upstream: weir and gauge at the crossing, installed circa 2000

National Wetlands Inventory (1979 imagery)

loss of wetlands – basic steady-state model of drainage

loss of wetlands – observed drainage

data from the North Dakota State Water Commission

What caused weir failure and resulting rapid incision in 2011? --- a much larger watershed

So what are some of the problems related to the ditch?

- 1. Reduced forage
- 2. Lower water table & increased expense for irrigation
- 3. Downstream sediment transport
- 4. Repeated reconstruction of bridges and culverts
- 5. Degraded water quality
- 6. Disturbed erodible soils and invasive weeds
- 7. Unknown environmental effect on species diversity and vigor

What were the alternatives?

- 1. Divert excess water toward the east and south
- 2. Compensation fund for flood damage (most times dry)
- 3. Off-channel impoundment, constructed wetlands

Summary --- Observations from Iron Springs Creek

- Problem with "one-size-fits all" for stream management
- Regional stream classification may be essential
- Delineating recharge / capture zones becomes more important than surface watersheds in areas of permeable soils
- Need to regulate diverted water both to and from GWD streams
- Serious hydrological problems may take decades to appear