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“Borehole Fractures”

Several Types Occur in Boreholes
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The amount of land involved in a wellhead

protection area is determined by a variety of factors
including...

the speed that groundwater travels, which
depends on fracture aperture
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NEUe o Contamination 1n Fractured

Sedimentary Rock
Requires a Different Approach
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New York State Site

Weatenviiet Arsenal Site: Building 40

Suspected degreaser source [§
— releases 1950s-60s #

PCE and degradation
products

Depth to shale bedrock
~ 15-20 ft bgs

Contamination down to ol "l
~ 200 ft bgs < — Hudson River

Plume discharges to Hudson
River




etwork Conceptual Model from

Borehole Flow Tests
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Using flowmeter pulse tests to define hydraulic connections in the
subsurface: a fractured shale example
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Ahstract
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©One Major Transmissive Zone

Atified from BH Flow Logging
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goneceptual Model: A Few Large Continuous
factures or Fracture Zones Dominate

DEPTH, IN METERS

DISTANCE, IN METERS
EXPLANATION

Tone of Mgh transmistity Zone of permeatiny rlored lr - i
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Williams, J.H., Paillet, F.L. 2002. Using flowmeter pulse tests to define hydraulic

connections in the subsurface: a fractured shale example. Journal of Hydrology, 265: &
100-117. :



Key Issues:

How many active fractures?

\What Is their Interconnectivity?
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Yy Between Matrix and Fractures

Controls Plume Behavior
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T'he Scientific Challenge

Improve understanding and prediction of plume
behavior in sedimentary rocks (aquifers and
aquitards) to assess risks, remediation designs

and response times
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lllustration of Fracture
and Matrix Porosities

Matrix Porosity: 2-20%

DETAIL A

mineral particle

Microscopic
view of rock
matrix

Fracture Porosity: 0.01 to 0.001% é



 Fracture network characteristics
— Fracture aperture, spacing,
— length and connectivity

« Matrix properties
— transport, storage and reactions

Discrete Fracture Network Field Approach

Use chlorinated solvent plumes as tracers
Natural flow system conditions



Fleld Focused Approach

 Revise standard field data collection methods
 Create innovative field data collections methods

* Use field data from contaminated sites to ground-truth
conceptual and numerical models




©verview of DFN Methods

Rock Core Contaminant Analyses & Properties

Improved Borehole Geophysics

Improved Hydraulic Tests Using Straddle Packers (Quinn)
Impermeable Flexible Liner (FLUTe™) Technologies

High Resolution Temperature Logging (Pehme et al.)
Passive Flux Meters (UF/UoG patent)

High Resolution Multilevel Systems

— Characterization vs. Monitoring

Static and Dynamic DFN Modeling i
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Conceptual Model for
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Core Sampling for

Mass Distribution

cored hole TCE malL
v rock core g 1 10 100
ENEE |
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analyzed
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Il . TCE migration




Depth (ft bgs)

Rock Core VOC Profile

versus Flow Zones
MW-83 Oct. 2003
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Comparison of Multilevel and

Rock Core Data
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FLUTe Llner

Cherry, Parker and Keller (2007) GWMR
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Geoclogic Formation

and Description
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[Benuication of Transmissive Features -
Hydraulic Testing

Three Types of Hydraulic Testing Methods:

1. High Resolution Packer Testing
2. FLUTe K-Profiling
3. Active Line Source Temperature Logging
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AGHIVENNNe Source Temperature Logging
Pehme, PhD, 2012

Innovative use of a FLUTe™ lined hole

Very sensitive temperature probe

Provides a NEW type of data




Simulated Probe

Response at Fracture

A. Temperature at
borehole centre
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Pehme, PhD, 2012
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Vertical Cross-Section
Well-Connected Fracture Network

Histogram: Fracture Apertures
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©verview of DFN Methods

Rock Core Chemical Analyses

Improved Borehole Geophysics

Improved Hydraulic Tests Using Straddle Packers
Forced
Impermeable Flexible Liner (FLUTe™) Technologies| Gradient
(KorT)
High Resolution Temperature Logging
Natural
Passive Flux Meters Gradient
(Flux)

High Resolution Multilevel Systems

— Characterization vs. Monitoring

Static and Dynamic DFN Modeling (data integration) i



Flat-lying stratigraphy

(~0.25° dip to the SW)

Measuring Fracture
Parameters at Sites



Hydraulic Fracture Apertures

HOW LARGE ARE FRACTURES?
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VWerNeed to obtain hydraulic

aperture (2b) values

Use the Cubic Law

(Smooth, parallel-plate fractures)

~—> N = number of active fractures
In the test interval

T is bulk rock transmissivity
determined from hydraulic tests

=2




Fracture Frequency and Network Geometry

HOW MANY FRACTURES ?




Inclined coreholes will

reduce sampling bias

* Increase probability of
Intersecting high-angle
fractures

| « Commonly used in

< i e ? mineral exploration,

” mining, petroleum, and
nuclear industries

« Not commonly used in
environmental industry

Munn, MSc, 2011 ﬁ
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olentated data allows accurate 3-D
structural analysis




Analysis with inclined coreholes

VS. only vertical coreholes

With inclined coreholes Only Vertical Coreholes

WNW-ESE

74% bedding plane 88% bedding plane
26% High- angle 12% High- angle

Munn, MSc, 2011




Hydraulic aperture calculations

Cubic Law

12T 2b = hydraulic aperture
2b =3 1 = dynamic viscosity of water

/‘gN p = density of water
g = acceleration due to gravity
T =transmissivity (FLUTe Profile)
N = number of fractures in interval
(Core or ATV Logs)

Example:
Interval
ATV Log Transmissivity
o lou 1 Fracture with an interval T of 0.14 cm?/s

cm?/s ‘ Average Hydraulic aperture: 281 microns

39.0

40.0

4 Fractures with an interval T of 0.25 cm?/s
Average Hydraulic aperture: 216 microns

0.25
cm?/s

=



Rock Core
ATV Image
1 fracture per interval (most conservative)

Most
Rock Core ATV LBLZClLEE e Fewest
Fractures interval Fractures

Munn, MSc, 2011 ' é |



Hydraulic Aperture Distribution

« Overall, hydraulic aperture ranged from 15 to 407 microns

« Geometric mean aperture (using core data) was 125 microns

* Hydraulic aperture distributions show a moderate to strong

positive skew

* Not highly sensitive to the number of fractures in the interval

(likely due to the very small T-intervals)

MW-25 ACH-01 ACH-02
Core ATV 1 Frac. Core ATV 1 Frac. Core ATV 1 Frac.
Geometric mean 147 146 159 125 145 158 104 113 122
Mean 158 160 173 139 159 173 115 126 135
Minimum 49 49 49 39 50 61 15 19 19
Maximum 407 407 407 396 396 396 297 317 317
Count 108 95 81 338 231 189 244 178 152

Munn, MSc, 2011




Groundwater & Contaminant Travel Times

WHY DO WE WANT TO KNOW ?
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Average Linear Groundwater
Velocity in Fractured Media

Vs represents line path from A to B



Application of Results

300

Source 2

Results of study can be
used as input parameters
into static and dynamic
models to assess current
and future threats to
municipal supply wells

01
0.01
0.001
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Source Zone / Plume Evolution

Source

Intermediate ‘}f} :

Time
i)

() | ! o Gl ey
4 ~ —— )
. = —~—a | AE 2 | 7
| AR T Vi \ !
— : ( ll
a9 e 2 {
{ e / — |
g )
Source
Zone
ume

Conceptual Model

m

DNAPL reaches
stationary phase
in fractures

Much DNAPL
disappeared, diffusion
Into matrix in source
and plume zones

No DNAPL remains and
most mass occurs in the
matrix, diffusion and
other processes cause

strong plume atten&



Case Study: California Site
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eompearison of FRACTRAN versus Field

Results along Plume Longsect

Field Plume
Longsect
(averaged)

- 3 : : Log TCE

g‘gg D
FRACTRAN 60 200 = - = : —a (ng/L)
@ 60 yr $_. pE= =
Eiso R — :
(averaged) ~ oS -—-— E

100

ORrNWAWM

50

0

200 400 X (m) 600 800 1000

Field and model show similar bulk plume style and ex&
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Nature of the Problem

e City of Guelph and many other
communities rely on groundwater from
bedrock aquifers

» Sources of contamination are
common and have affected supply
wells in Guelph

* Guelph’s demand for water is increasing
and the City is looking at reinstating
decommissioned wells

* Need to understand contaminant
migration through the aquifer

(Photo: K. Belan) - ,,--'-\




Retardation of Contaminants

Due to Matrix Diffusion

Dissolved

Water Tritium Perchlorate Dissolved TCE TCE DNAPL Particles

OQDO‘; 090000 o




Fracture Network

Characterization Summary

* Many new and improved conventional
methods exist —diverse tool kit

* Multiple data types can be used to calibrate
and check for biases
— Method performance is site & borehole specific

« Comparison and reconciliation of

complementary data sets useful for refining
site models and parameter inputs

Reduce uncertainty for improved decision-making

"



Discrete

Initial Site
Conceptual Model

Drill Corehole in and Near
I Contaminated Area 1

ROCK MATRIX BOREHOLE

Use rock samples from Use the borehole to
continuous rock core for acquire hydraulic data
property measurements: and water samples

Contaminants
Physical
Chemical
Microbial

Prepared by
-C - B.L. Parker

mathematical modeling @l



Drill in or near Contaminated Areas Use of Drill Holes

Use of Rock Core

Measurements during drilling

Measurements in completed hole

v
Lined Hole (maximize)
I I

y

v
Open Hole (minimize)
I 1

Core physical,
mineralogical,
and microbial
measurements

| e

Core
Contaminant
Analyses

Degradation
microcosms
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Geophysics
Temperature

Design
Multilevel
Systems

apertures, porosity

for phase and mass
distribution

Vertical Profiles:
Hydraulic Head,

Modeling y

Static Modeling (spatial distribution)

Dynamic modeling (flow, transport, reaction)

Assess transport, fate, and impacts to receptors

K, Flux,
Chemistry

Design networ
for long-term
site monitoring
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