Mapping the Blue Marble: NASA Research to Improve Monitoring and Forecasting of Water Resources

John Bolten Assoc. Program Manager, Water Resources john.bolten@nasa.gov

Bradley Doorn, Forrest Melton, Christine Lee NASA Applied Sciences Program Matt Rodell NASA GSFC

> MGWA November 16, 2016 Minneapolis, MN

Global Water Cycle

The continuous movement of water within, on, and above Earth's surface

Global mean water fluxes (1,000 km³/yr) at the start of the 21st century, based on satellite and ground-based observations and data integrating models.

The most noticeable impacts of climate change will be changes in the water cycle

Global Water Cycle

4

The Water Landscape

•How can we reduce our uncertainty in the propagation of hydroclimatic extremes?

For example, will a meteorological drought lead to a hydrological or agricultural drought?
How? When? Where?

•How do phases in P-E relate to soil moisture, surface drainage, base flow, groundwater storage, river discharge, and vegetation productivity?

Distribution and Water Use on Earth

Water Distribution

Freshwater Use

Source: Multiple, as reported by the World Bank, 2010

Objectives

With an integrated system perspective, use examples drawn from current research in the field of hydrology to

- Explain the basic underlying science and interactions.
- Discuss outstanding issues and challenges.
- Illustrate the state of art in earth observing technologies and strategies for environmental monitoring, assessment, and prediction.

Global Population Density

Projected Global Population Density

Murray et al., Journal of Hydrology, 2012

Blue Water Availability Per Capita

NASA

• Drought is a normal, recurrent feature of climate, caused by a deficiency of precipitation over an extended period

• Water shortage may be caused by drought, overuse of available water resources, or pollution

• >1 billion people lack access to "improved" water

• 1.8 million people die each year of diarrheal diseases, equivalent to 12 Boeing 747 crashes each day

- The 2011 Texas drought cost \$7.6 billion
- The 2012 U.S. drought cost \$40 billion

Monitoring

Rain and Snowfall

Snow Depth and Snow Water Equivalent

Evapotranspiration

Groundwater

Surface Water and River Flow

Groundwater

Inadequacy of Surface Observations

Issues:

- Spatial coverage of existing stations
- Temporal gaps and delays
- Many governments unwilling to share
- Measurement inconsistencies
- Quality control
- (Un)Representativeness of point obs

USGS Groundwater Climate Response Network. Very few groundwater records available outside of the U.S.

Global Telecommunication System meteorological stations. Air temperature, precipitation, solar radiation, wind speed, and humidity only.

River flow observations from the Global Runoff Data Centre. Warmer colors indicate greater latency in the data record.

Remote Sensing and Modeling

Precipitation

Tropical Rainfall Measurement Mission (TRMM)

- Global (50S-50N) precipitation
 measurement
 - $10 \leftrightarrow 85$ GHz radiometers
 - 13.6 GHz precipitation radar
 - 27 Nov 1997 to present

TRMM 14-year mean rainfall

Global Precipitation Measurement (GPM)

- Launched Feb 28, 2014
- Will use inputs from an international constellation of satellites to increase space and time coverage
- Improvements:
 - Longer record length
 - High latitude precipitation
 - including snowfall
 - Better accuracy and coverage

Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)

surface temperature

•chlorophyll fluorescence

•vegetation/land-surface cover, conditions, and productivity:

- •- net primary productivity, leaf area index, and intercepted photosynthetically active radiation
- •- land cover type, with change detection and identification;
- vegetation indices corrected for atmosphere, soil, and directional effects;

•cloud mask, cirrus cloud cover, cloud properties characterized by cloud phase, optical thickness, droplet size, cloud-top pressure, and temperature;

- aerosol properties
- •fire occurrence, temperature, and burn scars;
- •total precipitable water
- •sea ice cover
- snow cover
- derived evapotranspiration

31 January 2015

Instruments

- Radar(1.26 GHz)
 - $\checkmark\,$ High resolution, moderate accuracy
- Radiometer (1.4 GHz)
 - ✓ Moderate resolution, high accuracy

Shared antenna

- Constant incident angle: 40 degrees
- 1000 km wide swath

Orbit

- Sun-synchronous
- 6 am (Descending) / 6 pm (Ascending)
- 685 km altitude
- Global coverage every three days

Product	Description	Gridding (Resolution)	Latency**	
L1A_Radiometer	Radiometer Data in Time-Order	-	12 hrs	- Instrument Data
L1A_Radar	Radar Data in Time-Order	-	12 hrs	
L1B_TB	Radiometer T_B in Time-Order	(36×47 km)	12 hrs	
L1B_S0_LoRes	Low-Resolution Radar σ_o in Time-Order	(5×30 km)	12 hrs	
L1C_S0_HiRes	High-Resolution Radar σ_o in Half-Orbits	1 km (1−3 km)#	12 hrs	
L1C_TB	Radiometer T_B in Half-Orbits	36 km	12 hrs	
L2_SM_A	Soil Moisture (Radar)	3 km	24 hrs	Science Data (Half-Orbit)
L2_SM_P*	Soil Moisture (Radiometer)	36 km	24 hrs	
L2_SM_AP*	Soil Moisture (Radar + Radiometer)	9 km	24 hrs	
L3_FT_A*	Freeze/Thaw State (Radar)	3 km	50 hrs	Science Data (Daily Composite)
L3_SM_A	Soil Moisture (Radar)	3 km	50 hrs	
L3_SM_P*	Soil Moisture (Radiometer)	36 km	50 hrs	
L3_SM_AP*	Soil Moisture (Radar + Radiometer)	9 km	50 hrs	
L4_SM	Soil Moisture (Surface and Root Zone)	9 km	7 days	Science Value-Added
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km	14 days	

Surface Water Ocean Topography (SWOT)

Stream Discharge and Surface Water Height

Motivation:

- critical water cycle component
- essential for water resource planning
- stream discharge and water height data are difficult to obtain outside US

Interferometer Concept

(JPL)

rom 2m x 60

to 2m x 10r

• find the missing continental discharge component

Mission Concepts:

Laser Altimetry Concept e.g. ICESat (GSFC)

Radar Altimetry Concept e.g. Topex/Poseidon over Amazon R.

Source: M. Jasinski/614.3

Gravity Recovery and Climate Experiment (GRACE)

Matt Rodell NASA GSFC

GRACE Derived Terrestrial Water Storage Variations

GRACE Science Goal: High resolution, mean and time variable gravity field mapping for Earth System Science applications

Instruments: Two identical satellites flying in tandem orbit, ~200 km apart, 500 km initial altitude

Key Measurement: Distance between two satellites tracked by K-band microwave ranging system

Key Result: Information on water stored at all depths on and within the land surface

GRACE measures changes in total terrestrial water storage, including groundwater, soil moisture, snow, and surface water. Animation of monthly GRACE terrestrial water storage anomaly fields. A water storage anomaly is defined here as a deviation from the long-term mean total terrestrial water storage at each location.

Matt Rodell NASA GSFC

28

Land Surface Model Structure

LSMs solve for the interaction of energy, momentum, and mass between the surface and the atmosphere in each model element (grid cell) at each discrete time-step (~15 min)

Input - Output = Storage Change $P + G_{in} - (Q + ET + G_{out}) = \Delta S$ $R_n - G = L_e + H$ System of physical equations: Surface energy conservation equation Surface water conservation equation Soil water flow: Richards equation Evaporation: Penman-Monteith equation etc.

Leaf Drip

Snow

ercolatio

Drainage

Water

Balance

Wind

Longwave

Radiatio

Recharge Laver

Energy

Balance

Data Integration with a Land Data Assimilation System (LDAS)

INTERCOMPARISON and OPTIMAL MERGING of global data fields

Satellite derived meteorological data used as land surface model FORCING

ASSIMILATION of satellite based land surface state fields (snow, soil moisture, surface temp, etc.)

Ground-based observations used to VALIDATE model output

Examples from NASA's GLDAS http://ldas.gsfc.nasa.gov/

Matt Rodell NASA GSFC

30

Applications

Monitoring Precipitation Memory

Soil Moisture Active Passive Mission

Global Precipitation Measurement Mission, Core Observatory

NASA

How Can We Improve Global Crop Forecasts?

http://www.pecad.fas.usda.gov/cropexplorer/

Satellite-based soil moisture observations are improving USDA's ability to globally monitor agricultural drought and predict its short-term impact on vegetation health and agricultural yield.

How Can We Improve Global Crop Forecasts?

Observations

Image courtesy: C. Reynolds

Can we Isolate the Impact in Food Insecure **Regions**?

Figure 3: Comparisons between $R_s(L)^{OL2}$ and $R_s(L)^{EnKF2}$ over a range of L (i.e., 0 to 6 months) for sparsely-instrumented countries with moderate-to-severe food security issues.

Figure 2: Global analysis of the net impact of assimilating AMSR-E soil moisture into the USDA water balance model.

Can We Improve End Of Season Yield Forecasts?

VI-yield rank correlation analysis for corn over central and eastern U.S.

Can We Improve End Of Season Yield Forecasts?

38

• In the United States, an average of 100 people lose their lives in floods annually, with flood damage averaging more than \$2 billion.

• The Midwest's "Great Flood of 1993" cost 48 lives and more than \$12 billion.

• Flash floods are the number one weather-related killer in the United States—

•2,200 deaths in Johnstown, Pennsylvania, May 31, 1889
•238 fatalities in Rapid City, South Dakota, June 9, 1972
•140 killed in the Big Thompson Canyon nr Denver July 31, 1976
•26 dead in Shadyside, Ohio, June 14, 1990

Real Time Flood Impact Assessment Tool

Infrastructure at Risk

Applying TRMM Precipitation for Landslide Hazard Assessment

41

3B42RT.2012020809 168 hours of rainfall

Source: D. Kirschbaum, NASA

Routine Lake Level Monitoring (Jason1/2 & ENVISAT)

http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir

Airborne Snow Observatory: Forecasting Snowmelt Inflow and Timing Airborne Snow Observatory

Tom Painter, JPL, http://aso.jpl.nasa.gov/

How the Airborne Snow Observatory Works

Mapping the Sierra Nevada with ASO

Monitoring Central Valley Land Subsidence

Tom Farr, JPL, https://science.jpl.nasa.gov/people/Farr/

A 1.3 mile stretch of the California Aqueduct experienced >8" of subsidence, with maximum of 13" at the stretch closest to the center of the subsidence feature.

Determining the Extent of Fallowed Agricultural Land with Satellite Imagery during Drought

PROJECT TEAM: NASA Ames Research Center, USGS, USDA National Ag. Statistics Service, California Dept. of Water Resources, NOAA, California State University Monterey Bay

Landsat 5, 7, 8 30m / 0.25 acres Overpass every 8-16 days

Forrest Melton, NASA ARC-CREST, https://nex.nasa.gov/nex/projects/1372/

Determining the Extent of Fallowed Agricultural Land with Satellite Imagery during Drought

PROJECT TEAM: NASA Ames Research Center, USGS, USDA National Ag. Statistics Service, California Dept. of Water Resources, NOAA, California State University Monterey Bay

Mapping Crop Water Requirements to Assist Growers in Optimizing Water Use

PROJECT TEAM: NASA Ames Research Center, California Dept. of Water Resources, Western Growers Association, California State University, Univ. of California Cooperative Extension, Desert Research Institute, USDA Ag. Research Service, USGS, Booth Ranches, Chiquita, Constellation Wines, Del Monte Produce, Dole, Driscoll's, E & J. Gallo, Farming D, Fresh Express, Pereira Farms, Ryan Palm Farms

NASA SIMS web and mobile data services puts irrigation demand across 8 million acres of farm land directly into the hands of farmers and water managers

Forrest Melton, NASA ARC, https://c3.nasa.gov/water/projects/1/

California's

2014

agricultural sector produced \$54b In

Students work hand in hand with growers to assess the accuracy of the satellite estimates and quantify benefits

NLDAS Data and Drought Monitor

Over 33 years of hourly gridded precipitation, surface meteorology, and land-surface model output, including a real-time drought monitor

NLDAS specifications and variables:

1/8th-degree (~12km) hourly gridded data from Jan 1979 to near real-time 25-53 North and 125-67 West

Input: Daily gauge precipitation analyses, NARR near-surface meteorology, NEXRAD radar data, bias-correcting GOES shortwave radiation

Output: Surface fluxes, snow cover/depths, soil moistures/temperatures, runoff, many others

NLDAS datasets and services are available from the NASA GES DISC:

Documentation on NLDAS, including a link to the NLDAS Drought Monitor:

An example of the NLDAS Drought Monitor (below) showing soil moisture percentiles of the 4 land-surface model ensemble-mean (Mosaic, Noah, VIC, & SAC) against the longterm soil moisture climatology of NLDAS. Figure from 13 June 2012.

Ensemble-Mean - Current Total Column Soil Maîsture Percentile NCEP NLDAS Products____ Valid: JUN 13, 2012

GRACE Data Assimilation for US Drought Monitor

GRACE terrestrial water storage anomalies (cm equivalent height of water) for June 2007 (Tellus CSR RL05 scaled).

New process integrates data from GRACE and other satellites to produce timely information on wetness conditions at all levels in the soil column, including groundwater. For current maps and more info, see http://www.drought.unl.edu/MonitoringTools.aspx

Drought indicators from GRACE data assimilation (wetness percentiles relative to the period 1948-present) for 25 June 2007.

How Can We Characterize the Exploitation of Global Water Resources?

Equivalent height of water (cm/yr)

Groundwater Depletion in Northern India

GW = TWS - SM - SWE

Groundwater continues to be depleted in the Indian states of Rajasthan, Punjab, and Haryana by about 16.0 km³/yr, reduced slightly from our previous (2002-08) estimate of 17.7 ±4.5 km³/yr (Rodell et al., *Nature*, 2009).

GRACE-Based Flood Potential

Emerging Trends In Global Freshwater Storage

Trends in terrestrial water storage (cm/yr), including groundwater, soil water, lakes, snow, and ice, as observed by GRACE during 2003-13

GRACE observes changes in water storage caused by natural variability, climate change, and human activities such as groundwater pumping

Applying GRACE to Constrain Regional Groundwater

2002 05 09

Water Equivalent Height Anomaly (mm)

NASA Applied Sciences Program

NASA Applied Sciences Program Water Resources Current Projects

NASA Applied Sciences Program Water Resources Contact

Home Start here

About **Our Mission**

Projects News What's happening Learn more Community Collaborate

Resources Events More info

Logout

NASA Applied Sciences Program Water Resources

Earth Science Serving Society

The goal of the ASP Water Resources application area is to apply NASA satellite data to improve the decision support systems of organizations and user groups that manage water resources. The ASP Water Resources application area partners with Federal agencies, academia, private firms, and international organizations.

LEARN MORE

https://c3.nasa.gov/water/

SERVIR is a joint development initiative of NASA and USAID, working in partnership with leading regional organizations around the globe, to help developing countries use information provided by Earth observing satellites and geospatial technologies for managing climate risks and land use.

RCMRD

ICIMOD

adpc

GPM GRM SRTM Compared and compa

Mapping of harmful microalgae in El Salvador

Frost mapping in Kenya

Flood Forecasting In Bangladesh

Questions?

John Bolten Assoc. Program Manager, Water Resources john.bolten@nasa.gov

Bradley Doorn, Forrest Melton, Christine Lee NASA Applied Sciences Program Matt Rodell NASA GSFC