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Global Water Cycle

The continuous movement of water within, on, and above Earth’s surface

Global mean water fluxes (1,000 km?3/yr) at the start of the 215t century, based on satellite and ground-based observations
and data integrating models.

The most noticeable impacts of climate change will be
changes in the water cycle




Global Water Cycle
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The Water Landscape
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*How can we reduce our uncertainty in the propagation of hydroclimatic extremes?

*For example, will a meteorological drought lead to a hydrological or agricultural drought?
*How? When? Where?

*How do phases in P-E relate to soil moisture, surface drainage, base flow, groundwater storage, river discharge, and
vegetation productivity?




Distribution and Water Use on Earth
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Objectives

With an integrated system perspective, use examples drawn from current
research in the field of hydrology to

« Explain the basic underlying science and interactions.
« Discuss outstanding issues and challenges.

« [llustrate the state of art in earth observing technologies and strategies
for environmental monitoring, assessment, and prediction.




Global Population Density
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1.Shanghai(14608512, China) 2.Buenos Aires(13076300, Argentina) 3.Mumbai(12691836, India) 4.Karachi(11624219, Pakistan) 5.Mexico City(11285654, Mexico)
6.1stanbul(11174257, Turkey) 7.Delhi(10927986, India) 8 ila(10444527, Philippi 9.Moscow(10381222, Russia) 10.Dhaka(10356500, Bangladesh)
11.Seoul(10349312, South Korea) 12.Sao Paulo(10021295, Brazil) 13.Lagos(9000000, Nigeria) 14.Jakarta(8540121, Indonesia) 15.Tokyo(8336599, Japan)
16.Zhumadian(8263100, China) 17.New York City(8008278, US) 18.Taipei(7871900, Taiwan) 19.Kinshasa(7785965, Congo (Kinshasa)) 20.Lima(7737002, Peru)

Source: Population Labs




Projected Global Population Density
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Blue Water Availability Per Capita

Million litres available per
person, per year

E M Less than 0.5 - Extreme stress
0.5 to =1.0 - High stress
1.0 to =1.7 - Moderate stress
[01.7 and over - No stress
[T Mo data
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Show Me the Water...

« Drought is a normal, recurrent feature of climate, caused by a
deficiency of precipitation over an extended period

« Water shortage may be caused by drought, overuse of available
water resources, or pollution

 >1 billion people lack access to “improved” water

- 1.8 million people die each year of diarrheal diseases, equivalent to
12 Boeing 747 crashes each day

« The 2011 Texas drought cost $7.6 billion

« The 2012 U.S. drought cost $40 billion




Monitoring
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Snow Depth and Snow Water Equivalent




Evapotranspiration




Groundwater




Surface Water and River Flow




| —
D
)
)
=
®)
-
>
@)
| —
O




Inadequacy of Surface Observations

Issues:

- Spatial coverage of existing stations

- Temporal gaps and delays

- Many governments unwilling to share
- Measurement inconsistencies

- Quality control

- (Un)Representativeness of point obs

Global Telecommunication System meteorological
stations. Air temperature, precipitation, solar radiation,
wind speed, and humidity only.

Thursday. April 03, 2014

GROC Stations.
Time Series End
[year]

+< 1980
1980 - 1984
1985 - 1989
1990 - 1994
1995 - 1999

2000 - 2004
2005 - 2009

+2010 - 2014

U S G S G rO U n dWate r C | I m ate R eS pO n Se N etWO r k . 8962 stations with monthly data discharge data, including data derived from daily data (Status: 20 December 2013) @

Koblenz: Global Runoff Data Centre, 2014.

Very few groundwater records available outside of SGROCE
the U.S. River flow observations from the Global Runoff Data Centre.

Warmer colors indicate greater latency in the data record.




Remote Sensing and Modeling




mome | - NASA Earth Science Missions and Instruments
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LIS, SAGE lIl (on ISS), TSIS-1, 0CO-3,
ECOSTRESS, GEDI, -
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Precipitation

Tropical Rainfall Measurement Mission
(TRMM)

Global (508 50N) precipitation

measurement
— 10 <« 85 GHz radiometers

Global Precipitation Measurement
(GPM)

» _—The GPM Core
Observatory
will provide
improved
measurements
of precipitation
from the tropics
to higher
latitudes

— 13.6 GHz precipitation radar

— 27 Nov 1997 to present

- o TR 5
i TN . e 5 ,\ : el -~ c;
Average of ALL AVAILABLE Rainfall mm/dd (3B43) 1998 1o 2011 —— -——,

TRMM 14-year mean rainfall

Launched Feb 28, 2014
Will use inputs from an international
constellation of satellites to increase
space and time coverage
Improvements:

- Longer record length

- High latitude precipitation

- including snowfall
- Better accuracy and coverage




Terra and Aqua Moderate Resolution Imaging
Spectroradiometer (MODIS)

*surface temperature
«chlorophyll fluorescence
svegetation/land-surface cover, conditions, and
productivity:
- net primary productivity, leaf area index, and
intercepted photosynthetically active radiation
-- land cover type, with change detection and
identification;
-- vegetation indices corrected for atmosphere, soil,
and directional effects;
«cloud mask, cirrus cloud cover, cloud properties
characterized by cloud phase, optical thickness, droplet
size, cloud-top pressure, and temperature;
eaerosol properties
«fire occurrence, temperature, and burn scars;
-total precipitable water
*sea ice cover
*SNOW cover
«derived evapotranspiration
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http://modis.gsfc.nasa.gov/

Soll Moisture Active Passive (SMAP)

31 January 2015

Instruments
* Radar(1.26 GHz)

v" High resolution, moderate accuracy
« Radiometer (1.4 GHz)

v' Moderate resolution, high accuracy

Shared antenna
» Constant incident angle: 40 degrees

Product

L1A_Radiometer

Description

Radiometer Data in Time-Order

Gridding
(Resolution)

Latency**

e 1000 km wide swath

L1A_Radar

Radar Data in Time-Order

L1B_TB

Radiometer 75 in Time-Order

(3647 km)

L1B_S0_LoRes

Low-Resolution Radar o, in Time-Order

(5%30 km)

Orbit

L1C_S0_HiRes

High-Resolution Radar o, in Half-Orbits

1 km (1-3 km)?#

L1C_TB

Radiometer T in Half-Orbits

36 km

Instrument Data

L2_SM_A

Soil Moisture (Radar)

3 km

* Sun-synchronous

L2_SM_P*

Soil Moisture (Radiometer)

36 km

« 6 am (Descending) / 6 pm (Ascending)

L2_SM_AP*

Soil Moisture (Radar + Radiometer)

9 km

Science Data
(Half-Orbit)

L3_FT_A*

Freeze/Thaw State (Radar)

3 km

685 km altitude

L3_SM_A

Soil Moisture (Radar)

3 km

L3_SM_P*

Soil Moisture (Radiometer)

36 km

» Global coverage every three days

L3_SM_AP*

Soil Moisture (Radar + Radiometer)

9 km

Science Data
(Daily Composite)

L4_SM

Soil Moisture (Surface and Root Zone )

9 km

L4 C

Carbon Net Ecosystem Exchange (NEE)

9 km

Science
Value-Added

Image courtesy:



http://www.jpl.nasa.gov/
http://www.jpl.nasa.gov/

Surface Water Ocean Topography (SWOT)

Stream Discharge and Surface Water Height

Motivation:

« critical water cycle component

« essential for water resource planning

* stream discharge and water height data are difficult to
obtain outside US

» find the missing continental discharge component

Mission Concepts:

Laser Altimetry Concept Radar Altimetry Concept Interferometer Concept
€. 9 ICESal (GSFC), e.g. Topex/Poseidon over Amazon R. (JPL)
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Gravity Recovery and Climate Experiment (GRACE)

Soil Moisture Vegetation Radiation
Snow, Ice, Rainfall Snow
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GRACE Derived Terrestrial Water Storage Variations

GRACE Science Goal: High resolution, mean and time
variable gravity field mapping for Earth System Science
applications

Instruments: Two identical satellites flying in tandem
orbit, ~200 km apart, 500 km initial altitude

Key Measurement: Distance between two satellites
tracked by K-band microwave ranging system

Key Result: Information on water stored at all depths on

and within the land ﬂ

2002-04-18
WE Thickness (cm)

Animation of monthly GRACE terrestrial water storage
GRACE measures changes in total terrestrial water anomaly fields. A water storage anomaly is defined here as a
storage, including groundwater, soil moisture, snow, deviation from the long-term mean total terrestrial water Matt Rodell
and surface water. storage at each location. NASA GSFC




Land Surface Model Structure

LSMs solve for the interaction of
energy, momentum, and mass between
the surface and the atmosphere in each
model element (grid cell) at each

discrete time-step (~15 min)
SURFACE
VEGETATION
SUBGRID ATMOSPHERE
HETEROGENEITY TRANSFER

NEEDLEPEA SCHEME

GRID

1
([ T[T [ ][] [l
IR~ D,

sl
y BARE SOIL: 15%
b [ ]

Reflected and
Longwave
Radiation

Water
Balance

Drainage

2 System of physical equations:
INENEEENEER  CEEEER — Surface energy conservation equation
Surface water conservation equation
Input - Output = Storage Change Soil water flow: Richards equation
P+G;,~(Q+ET+G,,) = AS Evaporation: Penman-Monteith equation

Rn'G=Le+H etC.

Matt Rodell
NASA GSFC




Data Integration with a Land Data Assimilation

System (LDAS)
INTERCOMPARISON and
OPTIMAL MERGINGof / . . .
global data fields 78

5 10 25 80 100

PRECIPITATION

Satellite derived meteorological
data used as land surface model

FORCING

120 150 180 210 240 270 300 33c

ASSIMILATION of satellite based land
surface state fields (snow, soil moisture,
surface temp, etc.)

X ' Ground-based observations used
- to VALIDATE model output

L | O e —— . o ame N Examples from NASA’'s GLDAS
SNOW WATER EQUIVALENT #* j e http://Idas.gsfc.nasa.gov/

Matt Rodell
NASA GSFC




Applications




Monitoring Precipitation Memory

Soil Moisture Active
Passive Mission

-

Surface Soil Moisture Anomaly

. ) TR Global Precipitation
- Measurement

Mission, Core
Observatory




Leading Indicator of Vegetation Changes
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How Can We Improve Global Crop Forecasts?

Model + satellite observations

ST 04/11/2014 - 04/20/2014
1 - T.s

Surface Soil Moisture
(mm)

20-254

USDA-FAS-OGA USDA-FAS-OGA

http://www.pecad.fas.usda.gov/cropexplorer/

Satellite-based soil moisture observations are improving USDA'’s ability to globally monitor
agricultural drought and predict its short-term impact on vegetation health and agricultural
yield.




How Can We Improve Global Crop Forecasts?

AFWA Precip

11/01-10/2015

{ ﬁ

Model - AFWA

USDA-FAS-OGA

AFWA precip artifact
carried over to AFWA surf.

11/01-10/2015

SM

Model + Satellite
Observations

11/01-10/2015

Artifact corrected
Better variability

USDA-FAS-0GA Nov>D, ‘l{]l

Image courtesy: C. Reynolds
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http://www.pecad.fas.usda.gov/cropexplorer/
http://www.pecad.fas.usda.gov/cropexplorer/

Can we Isolate the Impact in Food Insecure
Regions?
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soil moisture anomalies with future vegetation anomalies (1 month) averaged within
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Figure 3: Comparisons between R (L)°? and R(L)E"XF2 over a range
of L (i.e., 0 to 6 months) for sparsely-instrumented countries with
moderate-to-severe food security issues.
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Figure 2: Global analysis of the net impact of assimilating AMSR-E soil moisture
into the USDA water balance model.




Can We Improve End Of Season Yield Forecasts?

VI-yield rank correlation analysis for corn over central and eastern U.S.




Can We Improve End Of Season Yield Forecasts?
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Floods

- In the United States, an average of 100 people lose their lives in
floods annually, with flood damage averaging more than $2 billion.

« The Midwest's "Great Flood of 1993" cost 48 lives and more than $12
billion.

« Flash floods are the number one weather-related killer in the United
States—
2,200 deaths in Johnstown, Pennsylvania, May 31, 1889
«238 fatalities in Rapid City, South Dakota, June 9, 1972
140 Kkilled in the Big Thompson Canyon nr Denver July 31, 1976
«26 dead in Shadyside, Ohio, June 14, 1990

Source: NOAA




Real Time Flood Impact Assessment Tool
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Applying TRMM Precipitation for Landslide Hazard
Assessment

12 1620 24 28 32 36 40 d4dinches

L

809

Landslide Potential 41
Source: D. Kirschbaum, NASA

8 FEB 2012 0600 UTC




Routine Lake Level Monitoring (Jasonl/2 & ENVISAT)
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Airborne Snow Observatory: Forecasting Snowmelt Inflow
and Timing Airborne Snow Observatory

Mt. Lyell, California : : — Snow Water Equwalent/’"
ASO snow depth ol ™~ Tuolumne Basin
May 12,2013 e i Py, Jun - 20 2016

SWE (meter)

[ Jo.00
Il 0.06
N 0.13
Il 0.19
BN 026
BN 0.32
0.39
0.45
0.50

Tom Painter, JPL, http://aso.jpl.nasa.gov/




How the Airborne Snow Observatory Works

How much snow? How will it melt? et 2o

Using laser radar, known as Lidar, researchers With an advanced light sensor, scientists measure Percent of

1981-2010 Median (US)
measure the depth of snowpack in California. snow's reflectivity — an indicator of how it will melt. aetE0 Aversae (Canace)
150 - 180
130 - 149
110 - 129
90 - 109
70 - 89

o Laser pulse
sent from plane

0 The time it takes
the laser to return
to the planeis
proportional to the

elevation. The
difference between
summer elevation
and snow elevation

Summer
no Snow

Laser reflects back Laser reflects back
from the ground. from surface of snow.

Sources: Thomas Painter, Frank Gehrke, Optech Inc.




Mapping the Sierra Nevada with ASO

2014 Hetch Hetchy Observed & Forecasted
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Monitoring Central Valley Land Subsidence

San Joaquin Valley Subsidence ‘ s SN o .. & Legend
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Googleeart
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A 1.3 mile stretch of the California Aqueduct experienced >8” of

_ _ subsidence, with maximum of 13” at the stretch closest to the
Tom Farr, JPL, https://science.jpl.nasa.gov/people/Farr/ center of the subsidence feature.




Determining the Extent of Fallowed Agricultural
Land with Satellite Imagery during Drought

PROJECT TEAM: NASA Ames Research Center, USGS, USDA National Ag. Statistics Service,
California Dept. of Water Resources, NOAA, California State University Monterey Bay

ey

7t

Landsat 5, 7, 8
September 2011 A0 REEEE o - 30m / 0.25 acres

B Annual idle CR B Annual Idie Overpass every 8-16 days
Cropped e | Cropped S B

Forrest Melton, NASA ARC-CREST, https://nex.nasa.gov/nex/projects/1372/




Determining the Extent of Fallowed Agricultural
Land with Satellite Imagery during Drought

PROJECT TEAM: NASA Ames Research Center, USGS, USDA National Ag. Statistics Service,
California Dept. of Water Resources, NOAA, California State University Monterey Bay
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Mapping Crop Water Requirements to Assist Growers in
Optimizing Water Use

PROJECT TEAM: NASA Ames Research Center, California Dept. of Water Resources, Western Growers Association, California State
University, Univ. of California Cooperative Extension, Desert Research Institute, USDA Ag. Research Service, USGS, Booth Ranches,
Chiquita, Constellation Wines, Del Monte Produce, Dole, Driscoll’s, E & J. Gallo, Farming D, Fresh Express, Pereira Farms, Ryan Palm Farms

Landsat 8

California’s
agricultural sector
produced $54b In
2014

NAGA SIS web and mobIe data Services puts Trigation demand ) .
WED AN T S - Rl Students work hand in hand with growers to assess

across 8 million acres of farm land directly into the hands of . i -
farmers and water managers the accuracy of the satellite estimates and quantify
benefits

Forrest Melton, NASA ARC, https://c3.nasa.gov/water/projects/1/




NLDAS Data and Drought Monitor

Over 33 years of hourly gridded precipitation, surface
meteorology, and land-surface model output, including a
real-time drought monitor

NLDAS specifications and variables: An example of the NLDAS Drought Monitor
1/8t-degree (~12km) hourly gridded data (below) showing soil moisture percentiles of
from Jan 1979 to near real-time the 4 land-surface model ensemble-mean
25-53 North and 125-67 West (Mosaic, Noah, VIC, & SAC) against the long-

term soil moisture climatology of NLDAS.

Input: Daily gauge precipitation analyses, NARR Figure from 13 June 2012.

near-surface meteorology, NEXRAD radar data,
; . o, Ensemble—Mean — Current Total Column Sail Moiature Percantile
bias-correcting GOES shortwave radiation NCEP NLDAS Products___ Valid; JUN 13, 2012

&1H . . - Kﬁ_ . .‘}-‘ a \_u)‘:'? f‘ .: F
2 = .“ .

Output: Surface fluxes, snow cover/depths, soil
moistures/temperatures, runoff, many others

NLDAS datasets and services are available
from the NASA GES DISC:

Documentation on NLDAS, including a link
to the NLDAS Drought Monitor:
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http://disc.sci.gsfc.nasa.gov/hydrology/
http://ldas.gsfc.nasa.gov/nldas/

GRACE Data Assimilation for US Drought Monitor

GRACE terrestrial
water storage
anomalies (cm
equivalent height of
water) for June 2007
(Tellus CSR RLO5
scaled).

=20 =15 =10 -6 =

New process integrates data from GRACE and other
satellites to produce timely information on wetness
conditions at all levels in the soil column, including
groundwater. For current maps and more info, see
http://www.drought.unl.edu/MonitoringTools.aspx

June 26, 2007

Valid § a.m. EDT

U.S. Drought Monitor
M

Infensity: Drought Impact Types:
DO Abnermally Dry r~ Delineates dominant impacts
] D1 Crought - Moderate A= Agricultural (crops, pastures
[ D2 Drought - Severe grasslands)
I D3 Drought - Extreme H = Hydrological (water) )
M O4 Drought - Exceptional - _
USDA P C?\; S

The Drought Monitor focuses on broad-scale conditions, T sV o pegacin

Local conditions may vary. See a ying fext
Released Thursday, June 28, 2007

for forecast statements.
http:fidrought.unl.edu/dm Author: Douglas Le Comte, CPC/NOAA

U.S. Drought Monitor product for 26 June 2007.

Drought indicators from GRACE data assimilation (wetness
percentiles relative to the period 1948-present) for 25 June 2007.




How Can We Characterize the Exploitation of
Global Water Resources?

Net Consumptive Use of Ground and Surface Waters,
Percentage of Irrigated Area 1998-2002
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Terrestrial Water Storage “Trends” from GRACE
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Groundwater Depletion in Northern India

—Total Terrestrial Water
—Soil Water
—Groundwater
==-Groundwater Trend
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Rate of change of terrestrial water storage
(cm/yr) from 2003-2012 based on
GW = TWS - SM - SWE NASA/GRACE satellite observations.

Groundwater continues to be depleted in the Indian states of Rajasthan,
Punjab, and Haryana by about 16.0 km3/yr, reduced slightly from our previous
(2002-08) estimate of 17.7 4.5 km3/yr (Rodell et al., Nature, 2009).




cm water

GRACE-Based Flood Potential

TWSA — Terrestrial Water Storage Anomaly
Pmon — Integrated Precipitation Anomaly
Sdef — Storage Deficit

0.8

0
REAGER AND FAMIGLIETTI, GRL 2009
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Emerging Trends In Global Freshwater Storage

Trends in terrestrial water storage (cm/yr), including groundwater, soil
water, lakes, snow, and ice, as observed by GRACE during 2003-13

Russian droughts in
2010 and 2012

Drought gave way to
flooding in the Missouri =
River basin in 2011

Return to normal after

Recent droughts in the wet years in early 2000s

southeastern U.S. and

Texas Drought recovery and

flooding
Recovery from 2004-05
drought in the Amazon

2010 Chile earthquake and

drought in southern

Argentina Return to normal in the
Okavango Delta after drought
ended in 2007

GRACE observes changes in water storage caused by natural variability,
climate change, and human activities such as groundwater pumping




Applying GRACE to Constrain Regional Groundwater

# derived
terrestrial water
storage change

Snow Water Equivalent
I Soil Moisture
[ Groundwater
— Observed Groundwater
GRACE Total Water

[e2]
o

depth (mm)

Jan-03 Jul-03 Jan-04 Jul-04 Jan-05 Jul-05 Jan-06

Zaitchik, Rodell, and Reichle, J. Hydromet.,
2008



http://www.epa.gov/maia/html/gw-text.html

GRACE observations of
Terrestrial Water Storage
changes in California
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NASA Applied Sciences Program




Resources

NASA Applied Sciences Program Water
Current Projects

Pl

Title

Pl Org.

Associate PM

Solicitation

AGHAKOUCHAK

Advancing Drought Onset Detection and Seasonal Prediction Using a
Composite of NASA Model and Satellite Data

UCl

Melton

ROSES 2013 - WR
Anomaly Outlook

BOLTEN

Enhancing the USDA Global Crop Production Decision Support System with
NASA Soil Moisture Active Passive (SMAP) Satellite Observations

NASA/GS
FC

Lee

ROSES 2013 - WR
Anomaly Outlook

DAY

Advancing Water Supply Forecasts in the Colorado River Basin for Improved
Decision Making

Riverside
Tech. Inc.

Melton

ROSES 2013 - WR|
Anomaly Outlook

GEBREMICHAEL

Optimizing Reservoir Operations for Hydropower Production in Africa through
the use of Remote Sensing Data and Seasonal Climate Forecasts

UCLA

Lee

ROSES 2013 - WR
Anomaly Outlook

HOSSAIN

Towards Operational Water Resources Management in South Asia Exploiting
Satellite Geodetic and Remote Sensing Technologies

uw

Lee

ROSES 2013 - WR
Anomaly Outlook

JACOBS

Satellite Enhanced Snowmelt Flood Predictions in the Red River of the North
Basin

UNH

Bolten

ROSES 2013 - WR|
Anomaly Outlook

PETERS-LIDARD

Predicting Middle Eastern and African Seasonal Water Deficits using NASA
Data and Models

NASA/GS
FC

Bolten/Lee

ROSES 2013 - WR
Anomaly Outlook

RODELL

Integrating GRACE and GRACE Follow On Data into Flood and Drought
Forecasts for the Continental U.S.

NASA/GS
FC

Bolten

ROSES 2013 - WR
Anomaly Outlook

STANFORD

Decision Support System (DSS) to Enhance Source Water Quality Modeling
and Monitoring using Remote Sensing Data

Hazen —
Sawyer,
P.C.

Lee

ROSES 2013 - WR|
Anomaly Outlook

BIRKETT

The Global Reservoir and Lake Monitor (GRLM): Expansion and
Enhancement of Water Height Products.

UMD

Bolten

ROSES 2013 -
Drought

DOZIER

Assessing Water Resources in Remote, Sparsely Gauged, Snow-Dominated
Mountain Basins

UCSB

Melton

ROSES 2013 -
Drought

HAIN

Development of a Mult-Scale Remote Sensing Based Framework for
Mapping Drought over North America

NOAA

Melton

ROSES 2013 -
Drought

BECKER-RESHEF

Global monitoring of agricultural drought: A contribution to GEO GLAM

UMD

Bolten

ROSES 2013 -
Drought

MELTON

Mitigation of Drought Impacts on Agriculture through Satellite Irrigation
Monitoring and Management Support

NASA/AR
C

Bolten

ROSES 2013 -
Drought

PAINTER

Integration of precision NASA snow products with the operations of the
Colorado Basin River Forecast Center to improve decision making under
drought conditions

NASA/JPL

Melton

ROSES 2013 -
Drought

ROSENZWEIG

Adaptation Planning for Climate Change Impacts using Advanced Decision
Support and Remote Sensing: Irrigated Agriculture in California's Central
Valley

NASA/GS
FC

Melton

ROSES 2013 -
Drought

VERDIN

Fallowed Area Mapping for Drought Impact Reporting and Decision Making

USGS

Melton

ROSES 2013 -
Drought

WARDLOW

The Quick Drought Response Index (QuickDRI): An Integrated Approach for
Rapid Response Agricultural Drought Monitoring

UNL

Melton

ROSES 2013 -
Drought




NASA Applied Sciences Program Water Resources
Contact

Home About Projects Community Resources Events Logout

Applied Sdences Program

NASA Applied Sciences Program
Water Resources

The goal of the ASP Water Resources application area is to apply NASA satellite
data to improve the decision support systems of organizations and user groups
that manage water resources. The ASP Water Resources application area partners
with Federal agencies, academia, private firms, and international organizations.

LEARN MORE

https://c3.nasa.gov/water/




SERVIR &3

SERVIR is a joint development initiative of NASA and USAID, working in partnership with Ieading-
regional organizations around the globe, to help developing countries use information provided
by Earth observing satellites and geospatial technologies for managing climate risks and land use

Y Terra

Landsat 8

Mapping of harmful microalgae

~i o Flood Forecasting
in El Salvador Frost mapplng in Kenya In Bangladesh



Questions?

John Bolten’
Assoc. Program Manager, Water Resources

john.bolten@nasa.gov
LASSS ‘_ RR. N Bradley Doorn, Forrest Melton, Christine Lee
NASA Applied Sciences Program

Matt Rodell
— | k. NASA GSFC



