DEPARTMENT OF NATURAL RESOURCES

A Snapshot of Our Changing Climatology

Dr. Kenneth ("Kenny") Blumenfeld | Sr. Climatologist DNR State Climatology Office

11/17/2018

Items to bear in mind

- 1. Climate news elsewhere may not apply here
- 2. Observations & Projections are different
- We can (and do have) *Variability* and *Trends* simultaneously
 they do not disprove each other!
- 4. Not all hazards are changing—but they're still hazardous!
- 5. Seek more info and refresh frequently!

Minnesota's pronounced **OBSERVED** trends

- 1. Minnesota is becoming wetter and warmer
 - Major shift observed, projected to continue
- 2. Lowest temperatures are increasing fastest
 - Rapid loss in cold extremes, projected to continue
- 3. Extreme rainfall increasing
 - More and larger "big" events, projected to continue

These important hazards affect us but are not "worsening"...<u>YET</u>

- 1. Hot days, warm nights, heat waves not yet increasing
 - But PROJECTIONS indicate future increases *likely*
- 2. Drought
 - Future increases *possible*
- 3. Tornadoes, severe convective storms
 - Future unclear; scientific uncertainty

Confidence that climate change has <u>already</u> impacted Minnesota's weather and climate hazards

<u>Confidence</u>	<u>Attribute</u>	<u>Impacts</u>	
Highest	Winter, extreme cold Becoming <u>less</u> severe	<u>Indirect</u> (expanded species ranges)	
	Rainfall extremes Larger, more frequent	<u>Direct</u> (floods, damage, life/safety)	
Low	Severe convective storms Data quality issues	<u>Direct</u> (Structural damage, power outages)	
Lowest	Heat No increases or worsening	<u>Direct</u> (heat sickness, power failure)	
	Drought No increases or worsening	<u>Indirect</u> (water shortages, crop failure)	

Confidence that climate change will impact Minnesota's weather hazards <u>by mid-century</u>

<u>Confidence</u>	<u>Attribute</u>	Expectations by mid-century	
Highest	Winter, extreme cold	Continued rapid decline	
	Extreme rainfall	Unprecedented events <u>expected</u>	
High	Heat	Increases in severity, coverage, and duration	
Moderately High	Drought	Increases in severity, coverage, and duration possible	
Moderately Low	Severe convective storms	More "super events" possible, even if frequency decreases	

MN Getting Warmer and Wetter

Minnesota Average Temperature and Precipitation

Annual Precipitation (in.)

State Climatology Office

Minnesota Average Temperature and Precipitation

Annual Precipitation (in.)

State Climatology Office

11/17/2018

A new precipitation regime?

42 37 (Precip. Inches) 32 Lambtn, Jul-Jun, 62-82 27 Lambtn, Jul-Jun, 83-2018 22 mean precip diff = • +3.48 inches annually 17 Precip diff per square • 12 mile =8.08 million ft³ p (60 mil gallons) per year

2010s wettest decade on record (almost certainly)

11/17/2018

How We're Getting Wetter and Warmer

 Increases in frequency of heavy rainfall and magnitude of heaviest rainfall

• Winter warming + loss of cold extremes

 \rightarrow This warming sets us up for eventual extreme heat increases

More 1" rains, and more rainfall produced by them

1-inch rainfalls by year

2" and 3" rains increasing

2-inch rainfalls by year

3-inch Rainfalls by Year

11/17/2018

Even 4" rains increasing

4-in rainfalls by year

Heaviest rain in state larger and more variable

40-station max rainfall by year

Projections: Continued increase in "upper 2 percentile" rainfall

Source: 2014 National Climate Assessment, Midwest Chapter

Winter warming 13x faster than summer

				Υ.
Season	Temperature Metric	Avg. change	Avg. change	
		per decade	per decade	
		since 1895	since 1970	
Winter	Seasonal Avg.	+ 0.40°F	+ 1.2°F	
(Dec - Feb)				
Summer	Seasonal Avg.	+ 0.13°F	+ 0.09°F	
(Jun - Aug)				r

Minnesota Average Winter Minimum Temperatures 1896-2018

Days entirely above freezing increasing dramatically

Freeze-Free Characteristics at Milan, MN 160 215 Days between spring and fall Annual above-freezing days 150 205 freezes 195 140 185 130 120 175 # 1910s 1920s 1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s 2010s Average number of above freezing days per year (right axis) Days between last freeze of spring and first freeze of fall (left axis)

Highest Highs of Winter, Milan (MN), 1895-2018

Lowest Lows of Winter, Milan (MN), 1895-2018

Dramatic Loss of Cold Extremes Across MN

Count of Minimum Temps -35F or Lower, by Decade Grand Rapids Forest Research Station

* Prorated

Minnesota Average Summer Maximum Temperatures 1895–2018

Extreme heat not increasing--yet

Highest Highs of Summer Milan (MN), 1894-2017

Extreme heat not increasing--yet

Average # 90-degree days per year, Duluth

However, additional days above 95 F projected by mid-century

Source: 2014 National Climate Assessment, Midwest Chapter

In Summary

- Minnesota has gotten much wetter and warmer, and is projected to continue doing so.
- 2. Increased wetness has been driven in part by more frequent and larger heavy rains, with further increases expected.
- 3. The coldest conditions have eroded the fastest.
- 4. Hot weather has not "worsened," but erosion of winter cold will set us up for hotter summers in years/decades ahead

 \rightarrow Remember, we don't know exactly when this will begin (2040?)

Thank You!

Kenny Blumenfeld

Kenneth.Blumenfeld@state.mn.us

651-296-4214