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Presentation Topics

➢ Scope of Overall Project & Contribution by MDH

➢ Practical Physics of Layered Flow Systems

⚫ Conceptual models (analysis methods)

⚫ What is this ‘Leakage Factor’?

⚫ Inherent limitations of pumping tests

➢ Test Descriptions & Results from Four Sites

➢ Comparison of Test Results

➢ Conclusions
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Study of Flow Through Till

➢ Data collection at four sites by USGS & U. Iowa 

⚫ Rotosonic core

⚫ Obwells: water table, aquitard, and aquifer 

⚫ Slug tests

⚫ Water chemistry: tritium, stable isotopes, chloride

⚫ Long-term (~ one year) water level monitoring

⚫ Three sites, limited collection of pumping records from public 

water supply (PWS) systems 

➢ MODFLOW models
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MDH Participation - Aquifer Tests

➢ Testing, analysis, and report for PWS

⚫ Cromwell – May, 2017

⚫ Litchfield – June, 2017

➢ Analysis of USGS & MGS data 

⚫ UM Hydrogeology Field Camp - July, 2017 & July, 2018

➢ Preliminary evaluation of USGS data 

⚫ Olivia – July, 2018 
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Aquifer vs. Aquitard Response
➢Given: 

⚫ Till is heterogeneous

⚫ Methods to estimate quantity of vertical flow / unit area 

(leakage) are scale-dependent 

⚫ Traditional aquifer testing (obwells in aquifer) may provide 

a bulk estimate of leakage 

➢How do estimates of leakage compare?

⚫ obwells in aquifer 

⚫ obwells in till 
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Why Leakage Matters in Layered Systems

⚫ “All layered systems are leaky” 

⚫ Ultimate source of water in the system

⚫ Theis conceptual model assumes no leakage; this is a 

problem 

⚫ Understanding requires conceptual model that includes 

leakage 
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Conceptual Model, Assumed Source of Water 

Reference Source of Water

⚫ Theis (1935) - Transient change in (∆) storage only | no leakage

constant head boundary:  r → ∞

⚫ de Glee (1930) - Steady-state no ∆ storage | leakage only

constant head boundary: water table

⚫ Composite (Transient & Steady-state) ∆ storage + leakage, const. head boundaries

• Hantush-Jacob (1955) ∆ storage in aquifer, no ∆ storage in aquitard

• Neuman-Witherspoon (1969) ∆ storage in both: aquifer & aquitard
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Composite Model of Leakage Solves For

Aquifer Property Dimension

⚫ Transmissivity length2 / time

⚫ Storativity dimensionless 

⚫ Characteristic Leakage Factor length

Where does the Characteristic Leakage Factor (Leakage Factor) 

appear in the equations, how is it used? … 
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Theis (1935) → Hantush-Jacob (1955) 

Two → Three Aquifer Properties

Transmissivity

Storativity

Leakage Factor
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Aquitard

k’ - vertical conductivity

b’ - thickness

Theis (1935) Well function, W(u)

& dimensionless parameter: r/L

Theis (1935) Storativity 

unchanged



Solve for Aquitard Vertical Conductivity, k’

Known quantities:  b’, T, & L 

Published equation for Leakage Factor: 

Aquitard hydraulic resistance, c = = time-1

Bulk Aquitard Vertical Conductivity, 
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Hantush-Jacob (1955) 
Three Interdependent Aquifer Properties

Transmissivity

Storativity

Leakage Factor
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Aquitard

k’ - vertical conductivity

b’ - thickness

Interdependence: 

Transmissivity appears in 

the equations for S and L, 

as parameters (u, and r/L) 

are also inputs to leaky

Well function: W(u, r/L)



Shape of 

Transient 

Type-curves

Hantush-Jacob 

(1955 a)

∆ Storage in 

Aquifer only,

No ∆ Storage in 

Aquitard
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Theis curve



Shape of

Transient 

Type-curves

Hantush-Jacob 

(1955 a)

No leakage

Effect of

Leakage on

Drawdown 

Over Time

at Distance, r

13Blum, MGWA, Spring 2019

Theis curve



Shape of

Transient 

Type-curves

Hantush-Jacob 

(1955 a)
r is known

L is estimated from 

r/L match
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Theis curve
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Transient 

Analysis

Shape

No leakage

15

Theis curve
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Leaky Curve 

Match
T = 2,420 ft2/day

S = 5.0e-5

r = 100 ft.

L = r / (r/L)

L = 1,430 feet



Shape of 

Steady-state 

Type-Curve

Hantush-Jacob 

(1955 b)

Bessel function of 

the second kind zero 

order, Ko(x)
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Shape of 

Steady-state 

Type-Curve

Hantush-Jacob 

(1955 b)
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log-linear within the distance 

0.2 * X of pumped well

asymptotic to the X-axis

MS Excel function:

BESSELK(x,0)



Steady-state 

Analysis 

Shape
T = 2,330 ft2/day

S = 9.6e-4

X (s=0) = 2,340 feet

L = 2,340 / 1.12 

L = 2,090 feet
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pumped well

obwell 1

obwell 2

L = X-intercept / 1.12

“Radius of Influence”

L slightly smaller 

Than X-intercept,

Where drawdown = 0



Leakage Factor vs. % of Pumped Volume
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“Radius of Influence” 

Has a Problem

Zhou (2011) Sources of water, 

travel times and protection areas 

for wells in semi-confined 

aquifers. Hydrogeology Journal 

19, 1285–1291. 

DOI: 10.1007/s10040-011-0762-x

Drawdown, s ~ 0



Leakage Factor vs. “Radius of Detection”
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Working definition:

s ~ 0 at 1.12 * L 

Radius of Detection

~ 30 to 50 % of pumping 

induced leakage occurs 

farther than  the distance at 

which there is measurable 

drawdown



What is this ‘Leakage Factor’?

⚫ 1 of 3 properties, together describe aquifer & leaky setting

⚫ (aquifer transmissivity / aquitard hydraulic resistance) ^ 0.5

⚫ Required to estimate of vertical conductivity of aquitard, k’

⚫ A distance that is slightly shorter than the X-axis intercept on 

the semi-log distance-drawdown plot, where s = 0

⚫ Useful scaling factor for a given hydrogeologic setting

• Estimate of radial limit of observable drawdown, ~radius of detection

• The radius from the well over which a given portion of pumping volume 

recharges the aquifer – the distance does not change, regardless of 

pumping rate 
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Has Leakage

Given You 

Brain Cramp?
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Description 

of Four 

Aquifer 

Tests
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UM Field Camp

Cromwell

Litchfield

Olivia
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Practical Concerns: Water Levels in Till 

➢Can a reliable signal in till obwells develop within time-

frame of traditional one to five-day constant-rate test?

⚫ Evaluate signal reliability

Individual - obwell response is log-linear over time?

Aggregate - nest (till thickness / drawdown) is linear?

⚫ Evaluate effective thickness of till

Is response linear over the full or partial thickness of till?
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Analysis Process

➢Characterize aquifer properties (Theis & Hantush-Jacob) 

➢ Verify 

⚫ Drawdown in aquifer at till nest, estimate if necessary

⚫ Transient response of each till obwell is log-linear 

➢ Estimate effective thickness of till

➢Model till obwell data with Aqtesolv, Neuman-

Witherspoon solution
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Cromwell

Location
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UM Field Camp

Cromwell

Litchfield

Olivia
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Cromwell 

Test Site
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Nest 1

Nest 2

Pumped Well, Cromwell 4
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Cromwell 

Test Site
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Nest 1

Nest 2

~50 feet

Blum, MGWA, Spring 2019

~140 feet



Cromwell 

Aquifer 

Setting

Sandy 

Superior 

Lobe Till
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Layer 1

Layer 2

Layer 3
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Nest 2
Nest 1



Cromwell 

Aquifer Test

30

Well is Partially 

Penetrating:

40 ft. Screen over

~145 ft. Aquifer 

Thickness
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Nest 2
Nest 1

145 feet
40 ft. 

Screen



Cromwell 

Aquifer Test

31

Nest 2 

Four Till Obwells, 

No Obwell in 

Aquifer
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Nest 2
Nest 1

130 feet

145 feet



Cromwell 

Aquifer Test
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Nest 1 

Obwell in Aquifer &

Aquitard
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Nest 2
Nest 1

130 feet

145 feet



Cromwell 

Aquifer Test
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Question:

What is drawdown 

at top of aquifer -

base of till at

Nest 2 ?
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s = ???

Nest 2
Nest 1



Cromwell 

Nest 2 

Drawdown 

at Top of 

Aquifer
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5.3 feet



Cromwell Comparison

Method Well
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor

L (feet)

Vertical 

Hydraulic 

Conductivity 

k’ (ft/day)

Aqtesolv Hantush-

Jacob

Aquifer

USGS 1-B
4,380* 7.8e-3 330 2.6

Top of 

Aquifer
2,190

Aqtesolv Neuman-

Witherspoon
Till - Nest 1 2,200 5.0e-4 590 0.83

Aqtesolv Neuman-

Witherspoon

Till - USGS 

1-A & 2-E
1,590 5.5e-2 224 4.1
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* Anisotropy kz/kr = 0.5
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Cromwell Comparison

Method Well
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor

L (feet)

Vertical 

Hydraulic 

Conductivity 

k’ (ft/day)

Aqtesolv Hantush-

Jacob

Aquifer

USGS 1-B
4,380* 7.8e-3 330 2.6

Top of 

Aquifer
2,190

Aqtesolv Neuman-

Witherspoon
Till - Nest 1 2,200 5.0e-4 590 0.83

Aqtesolv Neuman-

Witherspoon

Till - USGS 

1-A & 2-E
1,590 5.5e-2 224 4.1
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* Anisotropy kz/kr = 0.5
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Geometric  

mean = 2.2



Litchfield 

Location
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UM Field Camp

Cromwell

Litchfield

Olivia
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Litchfield  

Test Site

38

Pumped Well 

Litchfield 2

Nest 1

Nest 2
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Litchfield 

Aquifer 

Setting

Heavy Clay 

Till, 

Weathered 

in Places

Layer 1

Layer 2

Layer 3
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130 

to

113

feet

110

feet

Nest 1



Short-

Term Test 

Effects of 

Pumping 

Only Seen 

in Till at 

Nest 1

40

Unweathered -

No response

Nest 1

Nest 2

Weathered -

Responded 

to pumping
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Litchfield 

Analysis of Short-Term Test

Method Well
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor 

L (feet)

Vertical 

Hydraulic 

Conductivity 

k’ (ft/day)

Manual 

Theis t/r2

Aquifer 

MW 

(607417)

9,350 1.6e-4 NA NA

Manual 

Hantush-Jacob

Aquifer 

All
9,170 2.0e-4 24,100 0.0018*

41

* Assumed till thickness of 113 feet, full thickness at Nest 1 site
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Litchfield 

Nest 1

Short-

Term Test 

Non-linear 

Response 

in Till… 
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Effective Thickness ?



Litchfield 

MW (607417)

Influence of 

Unknown Wells 

July 5 - 9, 2017
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16-hr Test, June 29, 2017



Litchfield 

Linear 

Response 

in Till from 

Pumping of 

Unknown 

Well(s)
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Effective Thickness 48 ft.



Litchfield

Impact of 

Regional

Irrigation

Pumping 

During 

2016
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Litchfield Comparison

Method Well
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor 

L (feet)

Vertical 

Hydraulic 

Conductivity 

k’ (ft/day)*

Manual 

Hantush-Jacob
Aquifer 9,170 2.0e-4 24,100

0.0018 

(full thickness)

0.00079

Aqtesolv 

Hantush-Jacob
Aquifer 11,000 9.5e-5 24,100 0.0009

Aqtesolv 

Neuman-

Witherspoon

Nest 1 8,000 2.0e-4 20,000 0.001

46

* Assumed effective till thickness of 48 feet, partial thickness at Nest 1 site
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Hydrogeology

Field

Camp 

Location

47

UM Field Camp

Cromwell

Litchfield

Olivia
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U of M

Hydrogeology

Field Camp

Site (HFC)
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HFC Schematic 

Cross-Section
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Layer 1 – water table

Layer 2 – sandy till

Layer 3 - aquifer
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130 ft.

14 ft.



HFC Schematic 

Cross-Section
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Till Heterogeneity, 

Local Sand 

Interlayer with 

Limited Extent
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HFC 

Effective 

thickness 

of Till 

~ 55 feet
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HFC Comparison

Method Well
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor 

L (feet)

Vertical 

Hydraulic 

Conductivity 

k’ (ft/day)

Manual Hantush-

Jacob
Aquifer 1, 380 7.3e-4 2,630 0.023

Aqtesolv Hantush-

Jacob
Aquifer 1,360 5.8e-5 2,330 0.029

Aqtesolv Neuman-

Witherspoon
Aquifer 1,340 5.8e-5 2,350 0.027

Aqtesolv Neuman-

Witherspoon

Till 

Obwell
1,430 6.9e-4 2,770 0.0093*

52

* Assumed till thickness of 55 feet, partial thickness deep till obwells
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Olivia 

Location

53

UM Field Camp

Cromwell

Litchfield

Olivia
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Olivia Test

Site

140 ft.

Heavy Clay 

Till & 

Lacustrine 

Sediments
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Obwell 

nest



USGS Long-Term Monitoring at Olivia
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USGS Long-Term Monitoring at Olivia 

56

Aquifer
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USGS Long-Term Monitoring at Olivia

57

Aquitard
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USGS Long-Term Monitoring at Olivia 
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Vertical 

Gradient 

~70 Feet
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Olivia 

Aquifer 

Obwell 

Response 

vs. 

Pumping 
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Olivia 

Till Obwell 

Response 

vs. 

Pumping
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Poro-elastic 

Response
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Olivia 

Comparison

Actual and

Unbounded 

(Ideal) 

Aquifer 

Response
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Observed

Ideal 

infinite 

aquifer
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Olivia Comparison

Method Well
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor 

L (feet)

Vertical 

Hydraulic 

Conductivity 

k’ (ft/day)

Agarwal Recovery Olivia 4 4,070 1.3e-6 NA NA

Agarwal Recovery O-7 3,870 1.4e-3 NA NA

Hantush-Jacob Aquifer 7,800 1e-11 2e+8 ~7e-7

Hantush-Jacob

Small L
Simulation 4,100 2.6e-6 3,700 0.042

Hantush-Jacob 

Large L
Simulation 4,100 4.6e-7 8,800 0.0074
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Comparison - Four Sites

63

* (x) Effective till thickness used for k’, ** Estimated properties of unbounded aquifer

Blum, MGWA, Spring 2019

Site
Transmissivity 

T (ft2/day)

Storativity

S

Leakage 

Factor 

L (feet)

Till 

Thickness 

b’ (feet)

Range in

Vertical Hydraulic 

Conductivity 

k’(ft/day)

Cromwell 4,380 7.3e-4 550 130 0.83 to 4.1

Hydrogeology 

Field Camp
1,430 6.9e-4 2,770 130 (55)* 0.0093* to 0.029

Litchfield 9,000 9.5e-5 24,000 113 (48)*
< 0.0008 to 0.0018

0.0009*

Olivia** ~ 4,100 ~ 1.0e-6 ~ 5,940 140 < 0.016



Conclusions - Test Methods

➢ Two different measures of vertical conductivity, k’
⚫ Bulk k’ from the aquifer response 

⚫ Local k’ from till obwell response (Neuman-Witherspoon)

➢Heterogeneous till complicates the comparison of k’ types
⚫ Bulk k’ bias to high value - large-scale till heterogeneity within ~1.5 L 

radial distance from the pumped well (Cromwell, Litchfield)  

⚫ HFC nest disturbed by local heterogeneity, but the aquifer bulk and till 

nest k’ (unexpectedly) nearly same value

⚫ Olivia was a null result because of bounded aquifer and lack of 

appropriate conceptual model to deal with observed response in till
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General Conclusions

➢ L and k’ from aquifer tests strongly influenced by most highly 

conductive till 

➢ Where obwells showed a response

⚫ Site-specific Nest k’ consistent with aquifer bulk k’  

⚫ Similar k’ from different methods: Hantush-Jacob, Neuman-Witherspoon

⚫ k’ range was within +/- 0.5 of geometric mean – within the typical range of 

variability of aquifer k from aquifer testing

➢ Lithology of till matters (sandy till vs. heavy clay-till)

⚫ Vertical flow is ‘focused’ at the heavy clay-till sites

⚫ The flux in or out of the aquifer (recharge/discharge) is determined by the 

most highly conductive areas of aquitard
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Questions & Implications

➢ How to protect drinking water from contamination in settings with 

focused recharge? 

➢ From these investigations, additional information about aquitards

is needed for improved models

➢ To start, methods to distinguish till settings & types of till & would 

be quite helpful to focus additional data collection (testing, etc.)

⚫ Weathered / Unweathered

⚫ % Clay / % Sand 

⚫ Vertical gradient across till 
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Litchfield 

MW (607417)

Influence of 

Unknown Wells 

July 5 - 9, 2017
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16-hr Test, June 29, 2017



Litchfield 

Pervasive 

Effect on 

Wells in 

Aquifer, 

Drawdown 

8 to 9 Feet 
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Steady-state 

Type-Curve

de Glee (1930),

Hantush-Jacob 

(1955)
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Steady-State Well Curve, de Glee (1930) 

Different Q

Shifts Curve 

on Y-axis Only

71

s
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Litchfield 

Hypothetical 

Well to be 

Modeled
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Nest 1

Litchfield 2

Modeled Well

r = 8,000 feet

T= 9,000 ft2/day

L= 22,000 

Q = ???? gpm
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Apply Steady-state Flow Model

➢ Known 

⚫ aquifer properties, 

⚫ effect on aquifer obwells

➢Unknown 

⚫ well location(s), and pumping rate(s)

➢Model with Bessel function

⚫ Choose hypothetical well location, r = 8000 feet 

⚫ Solve for pumping rate of hypothetical well… Q = 2300 gpm 
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T = 9,000 ft2/day
Sm = 18 ft.

𝐐 = 𝟐, 𝟑𝟎𝟎 𝐠𝐩𝐦
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Q =
T ∗ sm
70.6


