Groundwater flow through till: tortoise, hare, or not in the race?

Good Thunder Fm., Olivia, MN

Cromwell Fm., Cromwell, MN

¹Jared Trost, ²William Simpkins, ^{1,2}Anna-Turi Maher, ^{2,3}Alyssa Witt, ¹Andrew Berg, ^{1,4}James Stark, ^{5,6}Bob Tipping, ⁶Justin Blum, ¹Daniel Feinstein

¹U.S. Geological Survey, ²Iowa State University, ³Golder and Associates, ⁴Legislative Water Commission, ⁵MN Geological Survey, ⁶MN Department of Health

This information is preliminary and is subject to revision. It is being provided to meet the need for timely best science. The information is provided on the condition that neither the U.S. Geological Survey nor the U.S. Government shall be held liable for any damages resulting from the authorized or unauthorized use of the information.

A collaborative effort

- A 5-year collaborative project among:
 - U.S. Geological Survey
 - Iowa State University
 - Cities of Litchfield, Cromwell, and Olivia
 - Minnesota Depts. of Health and Natural Resources
 - Minnesota Geological Survey
 - University of Minnesota
- Major funding:
 - MN Environment and Natural Resources Trust Fund
 - USGS Cooperative Water Fund Program
- Major in-kind support:
 - Bill Simpkins, Iowa State University

A preview of today's presentations

This talk:

- Study design
- Variability: geology, K, hydraulic relationships, isotope geochemistry, and contamination
- Interpretive modeling

Afternoon talk:

Justin Blum: a presentation about lessons learned from aquifer tests at each site.

Hewitt Fm. near Akeley, MN

Two Posters

Motivation

- Confined aquifers supply drinking water to thousands of people
- How sustainable are these water supplies?

Motivation

Bedrock

- How we *like* to conceptualize groundwater flow through till to confined aquifers
- But how realistic is this?

Water

Motivation

- How we *like* to conceptualize groundwater flow through till to confined aquifers
- But how realistic is this?

Motivation-a focus on till

- How does groundwater flow through till?
- How long does it take water to move through till?
- How susceptible are the aquifers to contamination?

Project Goal

Better understand the sustainability of water supplies from confined aquifers.

Approach: for different glacial lobes and till units in Minnesota, we quantified:

- Variability of till hydraulic properties
- Leakage of water from till confining units to buried confined aquifers

Rotosonic coring in Olivia, MN, 2017

Study site selection

- Detailed hydrogeologic information available
- Physical setting characteristics
 - Small number of high capacity pumping wells
 - less than 300 ft below land surface
 - High-capacity well construction integrity
- Logistical requirements
 - Cooperative water operator
 - Accessible with large drill rig

Glacial Lobes and Sublobes of Late Wisconsin age (Jennings and Johnson, 2011)

Study sites

	Site	Lobe	Popula- tion	Pumping (MGY)
*	UMN hydro- geology field camp (HFC)	Wadena	~30-40 for 3 weeks in July	NA, good for long-term aquifer tests
\bigstar	Cromwell	Superior	231	6
★	Litchfield	Des Moines	6,630	340
★	Olivia	Pre- Illinoian	2,350	97

Glacial Lobes and Sublobes of Late Wisconsin age (Jennings and Johnson, 2011)

Well nest design and installation

Characterize profile with continuous core to place screens

Well nest design and installation

Continuous core collected to characterize profile and place screens

Well nest design and installation

Characterize profile with continuous core to place screens

Aquifer well: 2-in diameter; 5-10 ft screen (rotosonic or mud rotary)

> -Till wells: 1.25-in diameter, 3-ft screen (rotosonic or hollow-stem)

Ideally, a well nest would be installed near and far from a pumping well at a site

Data collection

Hydrology

- Water levels and precipitation
- Slug tests on all wells
- Aquifer tests at 4 sites (led by Justin Blum)
- Geochemistry of groundwater and pore water
 - Major ions and nutrients
 - Stable isotopes ($\delta^{18}O, \delta^{2}H$)
 - Enriched 3H (GW only)

Till Confining Unit (a.k.a. Till Aquitard) **Confined Aquifer**

Till Characterization

Site	Olivia	Litchfield	Cromwell	HFC
Lobe	Undetermined	Des Moines	Superior	Wadena
Age	Pre-Illinoian	Late Wisc.	Late Wisc.	Late Wisc.
Formation	Good Thunder	New Ulm Villard Mbr.	Cromwell	Hewitt
Grain Size [Sand:Silt:Clay]	37:40:23	50:32:17	57:31:13	67:22:11
Texture	Clay loam to loam	Loam to sandy loam	Sandy loam	Sandy loam Loamy sand
Staley et al., 2018				

Clay loam till

Sandy loam till

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Box plots of Log K for all study sites Data from slug tests Units in

meters/sec

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Box plots of Log K for Litchfield and the Dows Fm. in Iowa Data from

slug tests

Units in meters/sec

Mean hydraulic head measured in piezometers vs. depth at all sites

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Litchfield 1
Litchfield 2
Cromwell
HFC

Olivia

Beth Johnson and Jim Eidem, personal communication

Groundwater Velocity and Travel Time

	ALV from	Bottom of	ALV from	Bottom of
Site	K _h (ft/d)	Till (yrs)	K _v (ft/d)	Till (yrs)
LF-1	7E-02	2	2E-03	91
LF-2	3E-04	1,026	2E-04	2,129
Olivia	3E-03	125	3E-04	1,588
HFC	9E-03	30	2E-03	147

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Average linear velocity (ALV) =
$$\frac{Ki}{n}$$

n = 0.25

Chemistry to the Rescue

Core for Pore-Water Samples

Age Estimates from $\delta^{18}O$

Source	δ ¹⁸ Ο (‰) VSMOW
Glacier Ice (Paterson and Hammer, 1987)	-40 to -55
Lake Agassiz, southern Manitoba and North Dakota (Remenda et al., 1994)	-19 to -25
Beneath Lake Agassiz sediments in Clay County-Geologic Atlas B (Berg, 2018)	-19 to -23
Oak Creek Fm. till, Southeast Wisconsin (Simpkins and Bradbury, 1992)	-18
Preliminary Information-Subject to Revision. Not for Citation or Distribution.	
This study: pore water and groundwater are not glacial age	-8.33 to -11.61

Nuclear weapon test Bravo on Bikini Atoll, Feb. 28, 1954. USDOE, public domain.

Anthropogenic Tracers

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

GW-Cl PW-Cl
Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

concentrati

GW-CI PW-Cl

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Litchfield 2 CI/Br Mass Ratio

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

GW Cl/Br **PW** Cl/Br Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Summary

- Hydraulic head relationships suggest that groundwater in till "leaks" to the underlying confined aquifer (except Cromwell), but the "leak" magnitude reflects site-specific conditions
 - Travel times shorter than expected for "impermeable" till
- $\delta^{18}O$ data suggest post-glacial groundwater age at all sites
- ³H data suggest ~1960s age at Litchfield 1 and HFC sites
- Cl and Cl/Br ratio data suggest possible penetration of anthropogenic tracers (deicing salt?) to depth, particularly at urban sites
- Pore-water vs. groundwater geochemistry?
 - Possible explanations: sampling scale, crushing of grains with Cl, sample contamination, and fracture/matrix interaction

Quick Review

Quick Review

Modeling challenges

- Till hydraulic properties are variable and often unknown
- The extents of and connections between buried aquifers is largely unknown

Hydraulic

conductivity

к Low

K High

Questions for Modeling

- How does pumping affect groundwater flow through till?
- Where does the water enter the aquifer?
- Which model parameters are most important?

Hydraulic

conductivity

к Low

K High

Model construction

Specified head boundary

Specified head boundary

- MODFLOW 2000
- 500 x 500 ft cells
- N-to-S hydraulic gradient of 0.001
- Vertical downward gradient=0.15
- Recharge = 4 in/yr
- Local area used to calculate fluxes
 - Explanation
 - Rivers (RIV pkg)
 - Lakes (DRN pkg)
 - Pumping wells (MNW2 pkg)

Model construction

General description of model scenarios

Leakage (flux) into aquifer

Response variable

The percent of the total volume of water entering the aquifer from:

Above (downward flux) Laterally (lateral flux) Below (upward flux)

Leakage (flux) into aquifer

- Vary K, of till 0.001 2.0 ft/d
- Vary K_h of middle unit: 0.05 30 ft/d
- Wide range of relative fluxes into the aquifer

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

Leakage (flux) into till from surficial unit

Pumping-induced changes to groundwater flow into till from surficial aquifer

Pumping-induced changes to groundwater flow into till from surficial aquifer

Varying horizontal connectivity of aquifer

Sensitivity Analysis

 Calculated the relative sensitivity of downward flux for all model runs compared to the base model Surficial unit Upper till Middle unit and buried aquifer × 100

|Percent change in model parameter value|

Percent change in downward flux

Lower till

Sensitivity Analysis

- Most sensitive parameters:
 - K_v of upper till unit
 - Areal extent of conductive materials:
 - Buried aquifer
 - Lateral connectivity (middle unit K_h)
- Less sensitive parameters:
 - Aquifer K_h
 - Pumping rate
 - Screen length (partial penetration)
 - Upper till thickness

• Groundwater flows through till to a confined aquifer.

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

- Groundwater flows through till to a confined aquifer.
- Pumping increases the leakage of water into till
- Leakage into till induced by pumping is sensitive to hydraulic properties of till

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

- Groundwater flows through till to a confined aquifer.
- Pumping increases the leakage of water into till
- Leakage into till induced by pumping is sensitive to hydraulic properties of till
- Leakage into aquifer dependent on hydraulic properties of till

Project Goal

Better understand the sustainability of water supplies from confined aquifers.

Approach: for different glacial lobes and till units in Minnesota, we quantified:

- Variability of till hydraulic properties
- Leakage of water from till confining units to buried confined aquifers

Rotosonic coring in Olivia, MN

Overall conclusions

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

- Groundwater in till is "in the race"; multiple lines of evidence for groundwater flow through till:
 - Hydraulic head relationships demonstrated primarily downward flow with some faster than anticipated rates
 - Post-glacial groundwater found throughout till profiles
 - Anthropogenic tracers at depth at urban sites
 - Modeling showed that pumping can increase leakage rates
- Tortoise or hare? Both!
 - Evidence for wide-ranging leakage rates, even at a single site.

Implications

Preliminary Information-Subject to Revision. Not for Citation or Distribution.

• Implications for sustainability:

 Modeling suggests that hydraulic information about till is just as important as aquifer mapping for understanding sustainable withdrawals.

- Implications for conceptualization of till:
 - Expect surprises!
 - Simple conceptual models are likely not applicable.
 - Till is not impermeable and velocities may be higher than previously assumed.

Questions?

Jared TrostBitU.S. Geological SurveyIcjtrost<at sign>usgs.govbs

Bill Simpkins Iowa State University bsimp<at sign> iastate.edu

References Cited

- Berg, J.A., 2018, Geologic Atlas of Clay County, Minnesota County Atlas Series C-29 Part B, Hydrogeology. Report to accompany Plates 6,7,8. Accessed 4/1/2019 at <u>https://files.dnr.state.mn.us/waters/groundwater_section/mapping/cga/c29_clay/clay_report.pdf</u>.
- Jennings, C. E., and M.D. Johnson. 2011. The Quaternary of Minnesota. Developments in Quaternary Science.15: 499-511.
- Paterson, W.S.B and Hammer C.U., 1987. Ice core and other glaciological data. In: W.F. Ruddiman and H.E. Wright (Eds.), North America and Adjacent Oceans During the Last Glaciation. Geol. Soc. Am., Decade of North American Geology. Boulder, CO, K-3: 91-109.
- Remenda, V. H., J. A. Cherry, and T. W. D. Edwards. "Isotopic composition of old ground water from Lake Agassiz: implications for late Pleistocene climate." *Science*266, no. 5193 (1994): 1975-1978.
- Simpkins, W. W., and K. R. Bradbury. Groundwater flow, velocity, and age in a thick, fine-grained till unit in southeastern Wisconsin. *Journal of Hydrology* 132, no. 1-4 (1992): 283-319.
- Staley, A., Wagner, K., Nguyen, M., and Tipping, R. 2018. Core descriptions, borehole geophysics, and unit interpretations in support of phase I and II USGS hydrologic properties of till investigation. Minnesota Geological Survey Open File Report 18-03.

Image references

https://scubasanmateo.com/explore/turtle-clipart-hare/

http://clipart-library.com/tortoise-clipart.html

http://clipart-library.com/snow-plowing-cliparts.html

https://publicdomainvectors.org/en/free-clipart/Vector-graphics-of-younger-oak-tree/24737.html

http://clipart-library.com/clipart/344789.htm

http://clipart-library.com/clipart/8cA6xxXXi.htm