Pharmaceuticals in Groundwater: Fate, Transport, and Effects, Part I

William Arnold
University of Minnesota
Department of Civil Engineering
Overview

- Sources of Pharmaceuticals to Groundwater
- Detection/Monitoring
- Transport
- Potential Effects
- Mitigation Strategies
Routes to the Environment
Specific Sources to Groundwater

- Municipal wastewater
 - Sewage ponds/sewage farms
 - Artificial groundwater recharge
 - Irrigation
- Fertilization with liquid manure
- Manure lagoons
- Landfills
How are they detected?

- Levels range from ng/L to µg/L (ppt to ppb)
- 1-2 L samples
- pH adjustment
- Solid phase extraction (& derivatization)
- GC-MS or LC-MS/MS
What has been seen?

- **Source:** municipal wastewater
 - Clofibiric acid, lipid regulator
 - Carbamazepine, antiepileptic
 - Iopamidol, X-ray contrast
 - Sulfamethoxazole, antibiotic

- **Source:** wastewater for irrigation
 - Caffeine
 - Ibuprofen
 - Estrogens

Sacher et al, Vom Wasser, 2002, 99, 183
Scheytt, et al. ACS Symposium Series, 2001 v. 791
What has been seen?

- Source: lagoons/liquid manure
- Sulfa drugs
- Tetracyclines
What has been seen?

- **Source:** Landfill leachate
- **Sulfa drugs and analgesics**
 - Grunsted landfill, Denmark
 - In operation 1930-1977
- **22 different OWCs**
 - Landfill in Oklahoma
 - In operation 1920-1985
- **Suggests long term persistence/transport**

Barnes et al., *GWMR*, 2004 24, 119-126
Detection summary

- Wide range of compounds
 - Variety of structures
 - Variety of drug classes
- Maximum concentrations 1-10 ppb
- Antibiotics and estrogens of particular concern
Fate/ Transport

- Biodegradation is possible for some compounds, especially under aerobic conditions

- Sorption/Retardation
 - Pharmaceuticals don’t fit the “standard mold”
 - Acid/base chemistry, (multiple) pKₐ’s
 - Variety of substituents
 - Strong interactions with mineral surfaces
Fate/ Transport

\[K_{ow} = 0.06 \]
\[K_D = 1-100 \]
\[R = 5-400 \]

\[K_{ow} = 3 \]
\[K_D = 0.1 \]
\[R = 1.4 \]
Fate/ Transport

\[K_{ow} = 0.12 \]
\[K_D = 200-7000 \]
\[R = 500-30,000 \]

FIGURE 2. Sorption of oxytetracycline to sodium-saturated montmorillonite (●) and kaolinite (○) clays at a total ionic strength of 10 mM. The solid line (−) denotes the best fit of eq 3 to the montmorillonite data, and the dashed line (−−) denotes a model fit that considers only cation species interactions with the clay.
Potential Effects

- Public perception
 - Reliability of groundwater resources
 - Water reuse
 - Artificial groundwater recharge
 - River bank filtration
 - “Toilet to tap”
 - Irrigation with (treated) wastewater
Antibiotic Resistance

You are the next class of drug-resistant bacteria. As humans continue to abuse and overuse antibiotics, your ranks will swell. So, go out there and mutate! And remember: that which does not kill us makes us stronger!!

Reprinted by permission of the Milwaukee Journal Sentinel.
Resistance Genes in Groundwater

Up to six tetracycline resistance genes detected

Eight tetracycline resistance genes detected

One tetracycline resistance gene detected

Potential mitigation strategies

- Improved municipal wastewater treatment
 - Membranes
 - Add-on lagoons/wetlands (mixed success)
- Improved handling of manure
 - Lined ponds
 - Elevated temperature or time to allow degradation to occur before
- Answers will affect irrigation and groundwater recharge