

Quantifying "Significant" Environmental Effects to Wells and Wetlands Using Surface Water and Groundwater Modeling

Jim Aiken, PG

Barr Engineering Co. jaiken@barr.com 701-595-4155

Kirsten Pauly, PG/PE

Sunde Engineering, PLLC <u>kpauly@sundecivil.com</u> 952-229-8673

Acknowledgements

- Sunde Engineering, PLLC
- Bryan Rock Products
- Malkerson Sales
- Midwest Sales (Renaissance Festival)
- Louisville Township
- Scott County (RGU)

EIS:

https://www.scottcountymn.gov/506/M erriam-Junction-Sands

Barr Wetlands/Geologic/Hydrogeological Team

- Dave Dahlstrom (late great)
- Randy Duncan (retired)
- Ellen Considine, PG (now at DNR)
- Ben Sheets, PhD
- Greg Franzen, PE
- Brad Dunn, CPG
- Daniel Tix, PhD (now at Prairie Restorations, Inc)

BAR

- Jonathan Carter (Barr Data Science)
- Adam Janzen
- Evan Christianson, VP

Key takeaways

- Not all potential environmental effects are "significant" in the context of MN Rules Chapter 4410
- Stakeholders tend to assume that <u>any</u> effect has an impact
- Model forecasts of water table decline from the "baseline" can be confusing at water bodies/wetlands
- Results more straightforward in addressing impact to wells from project
- Using water balance method allows for clarity in understanding the change in flux to water bodies-potential effects more tangible
- Models can demonstrate that an effect with presumed impact can be plausibly mitigated-therefore the effect cannot be "significant" per rules

Outline

- Introduction and background Terms: what is a "significant" environmental effect?
- Methods
- How groundwater models are typically used to predict environmental effects for projects drawdown at water well example
- Discuss results and what is a "significant" environmental effect for dewatering near waterbodies like wetlands, lakes, and rivers.
- Summary

Background

Timeline

- 2011 Initial field work and modeling
- 2012 New ownership group
- 2015 Modeling continues
- 2017 Frac sand market crashes; project proceeds
- 2019 Final modeling completed
- July 2020 Scott Board Decision of Adequacy

Background: mineable deposits

- Historical mine area
- 1.2 mty/50-year deposit
- Sustainable mine plan
- Minimal dewatering
- Dry mining in dolostone first
- Hydraulic dredging into sandstone
- Complex phasing
- Reclamation: primarily open water

Background:

environmental review/permitting for aggregate mining

- National Environmental Policy Act and MN Rules 4410
 - Intent: provide information for public and decision makers on environmental aspects of a proposed project
- Projects with potential for significant adverse environmental effects that require further analysis during an EIS
- Scoping Environmental Assessment Worksheet (SEAW)
- Environmental Impact Statement (EIS)
- Permitting Interim Use Plan (vs CUP)
- Mine Development-adaptive management, monitoring, and mitigation

Terms (see 4410.1700 "DECISION ON NEED FOR EIS")

Effect

any measurable change due to a project

Significant

means there is an adverse environmental effect that can't be reversed, regulated or mitigated

Impact

our unofficial shorthand for the result of an adverse effect that would otherwise be significant (unless can be reversed, regulated or mitigated- not to be confused with "cumulative impacts")

Model development: scope of groundwater assessment

Conceptual site model

Groundwater flow model

- Steady state model-conservative (MODFLOW-NWT 2011)
- Refined from Metro Model 2 (Met Council, 2008)
- River Package and Drain Package for Wetlands
- Baseline groundwater data-initially 2 years but kept collecting more
- Calibrated to local and regional head data - weighted by proximity
- Pumping test data
- Inverse parameterization (PEST v12.1)
- Typical output is head or flux

Water resources

Surface water model (XP-SWMM)

- XP SWMM 2D hydraulics and flood model
- Purpose determine flood elevations, particularly Louisville Swamp
- Findings all of the water bodies are "flow through" to or from the river
- Distinction seepage wetland (Fresh Meadow and Shrub Carr complex) rarely inundated

Figure 1A. Peak Stage Probability Curve for the Minnesota River near the Louisville Swamp Outlet

Assessing effects of dewatering on wells

Water wells potentially effected by dewatering

Well interference - mitigation

- Looked at drawdown during installation during yield tests
- Same depth of water column over pump intake
- If well not properly constructed before dewatering documentation in well owner agreement
- If/when performance declines monitoring early warning
- Reset pump, drill new well, supply water

Assessing effects of dewatering on wetlands/water resources

Conceptual site model

Non-Mitigation

Typical approach: decline in head ("drawdown")

- Effect: 10–15-foot decline in water table
- Discharge to wetlands is short-circuited
- Assumption: 15 feet of drawdown at wetland ("this sounds kinda bad")
- What does it mean? RGU requested more info

3,000

"Proportional change" water balance

- Q=0 (steady state; no change in storage)
- $GW_{in} + R_{in} + SW_{in} = ET_{out}G_{out} + SW_{out}$
- Define the sources of water for each resource
- Flow in and out of each XPSWMM (Precip included in R terms)
- Estimate groundwater term in water balance
- Excess flow is available for dewatering (SW_{out} >>G_{in})
- Proportional change is the % change from dewatering x the % of GW input)

Water balance results

Table 2 Growing Season Dewatering Steady State Water Balance (Qin-Qout=0)

	Qin (acr	e-feet)			Qout (acre-fee	et)		Qout Lavailable to	% of Water	
Feature	Precip	Sand Creek Inflow	Watershed Runoff	Groundwater (GWin)	Evapotrans (ET)	Surface Out (SWout)	Groundwater (GWout)	GW without change to ET**	Balance Influenced by Dewatering***	
Louisville Swamp	327	12,653	108	0	427	12,659	2	12,661	0%	
Gifford Lake	NA	NA	217	75*	270	22	0	0	<mark>26%</mark>	
Wetland B4***	116	NA	106	89*	152	159	0	70	6%	
Seepage Wetland*	29	NA	0	49	38	40	0	0	63%	

Table is derived from Barr (2014b) included in Appendix A.

NA This term was not used in the model dataset for this parameter or was consolidated to efficiently utilize the model dataset.

Dewatering effects on water balance

	Phase		Non-Mitigation											
Alternative				Louisville Swamp			Gifford Lake			B4 Wetlar	nd Coi	mplex	SeepageWetland	
		E F	stimated Pumping Rate	Simulated % Change in GW Discharge	6 Net (mul 0% Ta	Change tiply by from ble 2)	Simulated % Change in GW Discharge	Net Change (multiply by 26% from Table 2)	Sim Char Di	ulated % nge in GW scharge	Net (mi 6% f	t Change ultiply by r.Table 2)	Simulated % Change in GW Discharge	Net Change (multiply by 63% from Table 2)
Alt 1/2	1A & 1	В	3 <mark>,</mark> 950	- 15%		0%	- 25%	-7%		- 91%		-5%	- 100%	-63%
Alt 1/2	2A & 2	В	3,310	- 21%		0%	- 14%	-4%		- 81%		-5%	- 100%	-63%
			2	2,960	- 16%	0%	- 12%	-3%	- 76%	-5	%	- 100%	63%	
	Alt 3		3	2,810	- 19%	0%	- 9%	-2%	- 68%	-4	%	- 100%	-63%	
			4A	3,240	- 21%	0%	- 10%	-3%	- 78%	-5	%	- 100%	-63%	
			4B	4 <mark>,</mark> 360	- 21%	0%	- 24%	-6%	- 91%	-5	%	- 100%	-63%	
	Alt 4/5/6													
			1	2,260	- 15%	0%	- 6%	-2%	- 76%	-5	%	- 100%	-63%	
			2	3,600	- 17%	0%	- 22%	-6%	- 91%	-5	%	- 100%	-63%	
			3	3,340	- 19%	0%	- 15%	-4%	- 82%	-5	%	- 100%	-63%	
			4	2,940	- 20%	0%	- 12%	-3%	- 70%	-4	%	- 100%	-63%	
	Reclamation		n		- 8%	0%	- 4%	-1%	+ 86%	59	%	+ 261%	164%	

Last words: Evaluating mitigation strategies

					SeepageWetland							
				Mitigation								
	Louisville Swamp			Giffor	d Lake	Simulated %			Not Change			
Estimated	Estimated		Simulated % Net Change		Net Change	SILLI	ulate	u 70	net	Change		
Pumping Rate	Rate	GW Discharge	0% from Table 2)	GW Discharge	26% from Table 2)	Change in		(multiply by				
4,970	1,700	- 12%	0%	- 24%	-15%							
9,960	7,510	- 17%	0%	- 13%	-8%	GW			63% from			
						·			-	LL - 21		
840	740	- 4%	0%	- 1%	-1%	Discharge			Table 2)			
3,480	1,520	- 12%	0%	- 11%	-7%					1		
4,200	2,360	- 17%	0%	- 9%	-6%	+ 18%			30%			
9,830	7,490	- 17%	0%	- 10%	-6%	1 4070			5070			
7,200	4,170	- 10%	0%	- 21%	-13%	- 55%	-3%	+ 33%	21%			
8,980	7,580	- 10%	0%	- 6%	-4%	- 30%	-2%	+ 28%	18%			
6,850	4,480	- 5%	0%	- 20%	-13%	- 55%	-3%	+ 34%	21%			
5,570	4,120	- 12%	0%	- 10%	-6%	+ 14%	1%	+ 79%	50%			
5,400	3,9 <mark>80</mark>	- 17%	0%	- 9%	-6%	+ 20%	1%	+ 83%	52%			
		- 8%	0%	- 4%	-1%	+ 86%	5%	261%	164%			

Dewatering effects with mitigation

Proportional change in water balance for seepage wetland

"Generally speaking, an abundance of water is not necessarily a bad thing if you are a wetland" – Daniel Tix, PhD (Botanist/Wetland Ecologist)

Without mitigation

Up 30% of additional GWin from discharge can be added if necessary

Summary

- Not all potential environmental effects are "significant" in the context of MN Rules Chapter 4410
- Stakeholders tend to assume that <u>any</u> effect has an impact
- Model forecasts of water table decline from the "baseline" can be confusing at water bodies/wetlands
- Results more straightforward in addressing impact to wells from project
- Using water balance method allows for clarity in understanding the change in flux to water bodies-potential effects more tangible
- Model can demonstrate that an effect with presumed impact can be plausibly mitigated-therefore the effect cannot be "significant" per rules

Questions?

Jim Aiken, PG

Barr Engineering Co. jaiken@barr.com 701-595-4155

Kirsten Pauly, PG/PE

Sunde Engineering, PLLC <u>kpauly@sundecivil.com</u> 952-229-8673