# Deep Subsurface Life in Soudan Formation Groundwaters

Christopher J. Schuler Department of Earth & Environmental Sciences University of Minnesota – Twin Cities

- Advisors
  - Cara Santelli & Brandy Toner
- First round of Soudan researchers
  - Lindsey Briscoe, Scott Alexander, Calvin Alexander, Jeff Gralnick

#### Current Soudan team

 Billy Dowd, David Hsu, Woonghee Lee, Amanda Patsis, Daniel Bond, Peter Kang, Jill McDermott, Cody Sheik





Thanks & Acknowledgements



### The Deep Biosphere

The Scientist, "Life Thrives within the Earth's Crust"

# Life in the Continental Subsurface

- Inorganic substrates are essential to microbial life in the deep biosphere.
- Form fundamental energetic backbone much like sunlight on surface.
- Example processes:
  - Reduction of  $Fe^{3+}$  and  $SO_4^{2-}$
  - Oxidation of H<sub>2</sub>, H<sub>2</sub>S, S<sup>0</sup>, CH<sub>4</sub>
- Often sourced directly from surrounding rock or result from rock-water interactions.



Flemming & Wuertz, Nature Reviews Microbiology, 2019

#### Subsurface Chemistry Impacts Stability of Waste Sites

- Subsurface environments have been suggested as potential storage sites for CO<sub>2</sub> sequestered from the atmosphere and for toxic heavy metals, e.g. nuclear waste.
- Microbes can affect these stability of these arrangements through direct or indirect means.
- Possible changes in pH and redox potential of the environment important to know when planning storage on the order of thousands of years





## Deep Crust as Astrobiological Analogue

- Though the surfaces of many worlds without atmospheres are thought to be too harsh for life, the same may not be true of the subsurface.
- Even planets without water today may have had some in the past – studying these environments on Earth can help us understand the signs to look for.
- Can also be seen as an analog for early Earth, before the oxygenation of the atmosphere













## Soudan Underground Mine State Park



# Major Questions:

# How can geochemistry help us better understand microbial life in the subsurface?

Two examples:

- 1. Can water chemistry help guide our site selection and help us better understand where to focus research efforts?
- 2. How much do microbes in the subsurface really interact with the minerals surrounding them?

# Major Questions:

How can geochemistry help us better understand microbial life in the subsurface?

Two examples:

- 1. Can water chemistry help guide our site selection and help us better understand where to focus research efforts?
- 2. How much do microbes in the subsurface really interact with the minerals surrounding them?

#### Access to deep fractures through boreholes



Toner et al.

#### Mine divided into East and West Drifts



#### Peterson, 2009

#### Stable Water Chemistry, but Definite Differences Between Boreholes



- Red lines indicate East Drift boreholes, while blue lines indicate West drift boreholes
- Solid lines indicate boreholes drilled at a downward angle, while dashed lines indicate boreholes drilled at a horizontal angle
- West drift, downward boreholes more saline!

Schuler et al., Frontiers in Earth Science, 2022

#### Water isotopes indicate isolated fluids



- Waters with a significant meteoric contribution/low residence time plot along the local meteoric water line.
- Long term, low-temperature interactions with silicate rocks causes enrichment in <sup>2</sup>H relative to <sup>18</sup>O
- West Drift waters have longer residence time in subsurface, less contribution from meteoric surface inputs

Schuler et al., Frontiers in Earth Science, 2022

#### Salinity Seems to Be Derived from a Single Source



#### Saline Waters Show Longest Isolation From Surface

- <sup>2</sup>H Excess measures deuterium abundance relative to <sup>18</sup>O
- Meteoric water has <sup>2</sup>H Excess of 0
- Low-temp interactions between water and rock elevates <sup>2</sup>H excess
- Values above 5 indicate long-term isolation



#### Soudan and the Broader Canadian Shield



#### Characteristic Canadian Shield Groundwaters



- Soudan fluids resemble those found in other mines across Canadian shield
- Soudan well poised to provide insight into deep microbiomes across shield
- BIF provides unique look at rock-powered life

Schuler et al. Frontiers in Earth Science, 2022

#### Highest Salinity Deep Biosphere Sites Studied

Region

- Canadian Shield
- Fennoscandian Shield
- Great Plains
- Soudan, MN
- South African Platform



- Canadian shield contains uniquely saline groundwaters
- Waters from a mine in Ontario have estimated residence time of 1 Ga (Holland et al. *Nature, 2013)*
- Yet understudied relative to Scandinavia & South Africa
- Schuler et al. *Frontiers in Earth Science*, 2022

#### Highest Salinity Deep Biosphere Sites Studied



- Canadian Shield
- Fennoscandian Shield
- Great Plains
- Soudan, MN
- South African Platform



Schuler et al. *Frontiers in Earth Science*, 2022

- Soudan has uniquely high Mg concentrations relative to overall salinity
- Mg groundwater concentrations diverse across deep biosphere sites
- Ca-Mg ratios (as well as –Na ratios) point to differences in rock chemistry and subsurface processes.

# Major Insights from Water Chemistry

- Some boreholes in Soudan access highly saline groundwaters, but not all do. (But we do see influence of these brines across all Soudan samples.)
- Soudan is representative of broader Canadian Shield with respect to water chemistry. (Though it also has some unique aspects high Mg and Fe!)
- Canadian shield has potential to host some of the most isolated waters in the world, and therefore potentially the most distinctive microbial communities. (If we take salinity as a barometer for "subsurface character".)

# **Major Questions:**

# How can geochemistry help us better understand microbial life in the subsurface?

Two examples:

- 1. Can water chemistry help guide our site selection and help us better understand where to focus research efforts?
- 2. How much do microbes in the subsurface really interact with the minerals surrounding them?

## Where is Subsurface Life Really Hosted?

- Vast majority of what we know about these environments comes from water samples
- Distribution of life in the crust still unknown – low cell counts in water, but hard to access actual biofilms
- Fundamental questions remain:
  - How much of this life resides in biofilms?
  - How does biofilm-hosted life differ from planktonic life?



#### Magnetic Sediments found in Borehole

![](_page_26_Picture_1.jpeg)

![](_page_26_Picture_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_4.jpeg)

![](_page_27_Figure_0.jpeg)

![](_page_27_Picture_1.jpeg)

#### More carbon than expected – but what form?

![](_page_28_Picture_1.jpeg)

#### Sediment Samples: Large Particles, Mat-like Carbon

![](_page_29_Figure_1.jpeg)

Sediments particles were uniformly composed of iron.

Carbon was ubiquitous in the samples, spread between mat and cell like forms.

### X-Ray Microscopy II: XANES

![](_page_30_Figure_1.jpeg)

### Carbon XANES

![](_page_31_Figure_1.jpeg)

- Cell-like spectra resemble protein.
- This is expected for microbial cells – strong protein signal from cell walls.
- Film-like spectra are less uniform.
- They resemble CO<sub>3</sub><sup>2-</sup>, lipids, or saccharides.

### Iron XANES

![](_page_32_Figure_1.jpeg)

- Film-like clusters contain ferric iron.
- Their spectra resemble ferrihydrite.
- Particles contain ferrous iron.
- Highest quality spectra are a strong match for FeS, though Fe-sulfides have similar spectra.

### Identified by XRD as Mackinawite

![](_page_33_Figure_1.jpeg)

- Powder XRD showed that the sample was poorly crystalline mackinawite (FeS)
- This phase commonly forms in anoxic environments due to micorbial Fe and S reduction
- Explains why Soudan fluids have high SO<sub>4</sub><sup>2-</sup> yet no HS<sup>-</sup>

#### Implications of Microbial Growth in Deep Sediments

![](_page_34_Picture_1.jpeg)

- 1. STXM provides evidence of both cell- and biofilm-like C in Soudan sediments.
- 2. Carbon was ubiquitous in the sediments, but cell-like carbon was not evenly distributed.
- 3. Sediments are a promising way to sample film-hosted microbes in the deep biosphere.

![](_page_35_Picture_0.jpeg)

- Deep Canadian Shield groundwaters are an opportunity to study the most isolated microbial communities on Earth.
- Sediments formed by iron and sulfur reducing microbes may allow for a unique look at biofilm-hosted life in the subsurface.
- Understanding these communities requires interdisciplinary approaches geochemistry must guide microbiological sampling (and vice versa!).
- Contact me: schu4222@umn.edu